You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 14 kB

4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim import Momentum, THOR
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.train_thor import ConvertModelUtils
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  26. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  27. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from mindspore.communication.management import init, get_rank, get_group_size
  30. from mindspore.common import set_seed
  31. from mindspore.parallel import set_algo_parameters
  32. import mindspore.nn as nn
  33. import mindspore.common.initializer as weight_init
  34. import mindspore.log as logger
  35. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  36. from src.CrossEntropySmooth import CrossEntropySmooth
  37. from src.config import cfg
  38. from src.eval_callback import EvalCallBack
  39. from src.metric import DistAccuracy, ClassifyCorrectCell
  40. parser = argparse.ArgumentParser(description='Image classification')
  41. parser.add_argument('--net', type=str, default=None, help='Resnet Model, resnet18, resnet50 or resnet101')
  42. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  43. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  44. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  45. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  46. parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
  47. help="Device target, support Ascend, GPU and CPU.")
  48. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  49. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  50. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  51. help="Filter head weight parameters, default is False.")
  52. parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
  53. help="Run evaluation when training, default is False.")
  54. parser.add_argument('--eval_dataset_path', type=str, default=None, help='Evaluation dataset path when run_eval is True')
  55. parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
  56. help="Save best checkpoint when run_eval is True, default is True.")
  57. parser.add_argument("--eval_start_epoch", type=int, default=40,
  58. help="Evaluation start epoch when run_eval is True, default is 40.")
  59. parser.add_argument("--eval_interval", type=int, default=1,
  60. help="Evaluation interval when run_eval is True, default is 1.")
  61. parser.add_argument('--enable_cache', type=ast.literal_eval, default=False,
  62. help='Caching the eval dataset in memory to speedup evaluation, default is False.')
  63. parser.add_argument('--cache_session_id', type=str, default="", help='The session id for cache service.')
  64. args_opt = parser.parse_args()
  65. set_seed(1)
  66. if args_opt.net in ("resnet18", "resnet50"):
  67. if args_opt.net == "resnet18":
  68. from src.resnet import resnet18 as resnet
  69. if args_opt.net == "resnet50":
  70. from src.resnet import resnet50 as resnet
  71. if args_opt.dataset == "cifar10":
  72. from src.config import config1 as config
  73. from src.dataset import create_dataset1 as create_dataset
  74. else:
  75. from src.config import config2 as config
  76. from src.dataset import create_dataset2 as create_dataset
  77. elif args_opt.net == "resnet101":
  78. from src.resnet import resnet101 as resnet
  79. from src.config import config3 as config
  80. from src.dataset import create_dataset3 as create_dataset
  81. else:
  82. from src.resnet import se_resnet50 as resnet
  83. from src.config import config4 as config
  84. from src.dataset import create_dataset4 as create_dataset
  85. if cfg.optimizer == "Thor":
  86. if args_opt.device_target == "Ascend":
  87. from src.config import config_thor_Ascend as config
  88. else:
  89. from src.config import config_thor_gpu as config
  90. def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
  91. """remove useless parameters according to filter_list"""
  92. for key in list(origin_dict.keys()):
  93. for name in param_filter:
  94. if name in key:
  95. print("Delete parameter from checkpoint: ", key)
  96. del origin_dict[key]
  97. break
  98. def apply_eval(eval_param):
  99. eval_model = eval_param["model"]
  100. eval_ds = eval_param["dataset"]
  101. metrics_name = eval_param["metrics_name"]
  102. res = eval_model.eval(eval_ds)
  103. return res[metrics_name]
  104. if __name__ == '__main__':
  105. target = args_opt.device_target
  106. if target == "CPU":
  107. args_opt.run_distribute = False
  108. ckpt_save_dir = config.save_checkpoint_path
  109. # init context
  110. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  111. if args_opt.parameter_server:
  112. context.set_ps_context(enable_ps=True)
  113. if args_opt.run_distribute:
  114. if target == "Ascend":
  115. device_id = int(os.getenv('DEVICE_ID'))
  116. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  117. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  118. gradients_mean=True)
  119. set_algo_parameters(elementwise_op_strategy_follow=True)
  120. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  121. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  122. elif args_opt.net == "resnet101":
  123. context.set_auto_parallel_context(all_reduce_fusion_config=[80, 210, 313])
  124. init()
  125. # GPU target
  126. else:
  127. init()
  128. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  129. gradients_mean=True)
  130. if args_opt.net == "resnet50":
  131. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  132. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  133. # create dataset
  134. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  135. batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
  136. step_size = dataset.get_dataset_size()
  137. # define net
  138. net = resnet(class_num=config.class_num)
  139. if args_opt.parameter_server:
  140. net.set_param_ps()
  141. # init weight
  142. if args_opt.pre_trained:
  143. param_dict = load_checkpoint(args_opt.pre_trained)
  144. if args_opt.filter_weight:
  145. filter_list = [x.name for x in net.end_point.get_parameters()]
  146. filter_checkpoint_parameter_by_list(param_dict, filter_list)
  147. load_param_into_net(net, param_dict)
  148. else:
  149. for _, cell in net.cells_and_names():
  150. if isinstance(cell, nn.Conv2d):
  151. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  152. cell.weight.shape,
  153. cell.weight.dtype))
  154. if isinstance(cell, nn.Dense):
  155. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  156. cell.weight.shape,
  157. cell.weight.dtype))
  158. # init lr
  159. if cfg.optimizer == "Thor":
  160. from src.lr_generator import get_thor_lr
  161. lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
  162. else:
  163. if args_opt.net in ("resnet18", "resnet50", "se-resnet50"):
  164. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  165. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  166. lr_decay_mode=config.lr_decay_mode)
  167. else:
  168. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
  169. config.pretrain_epoch_size * step_size)
  170. lr = Tensor(lr)
  171. # define opt
  172. decayed_params = []
  173. no_decayed_params = []
  174. for param in net.trainable_params():
  175. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  176. decayed_params.append(param)
  177. else:
  178. no_decayed_params.append(param)
  179. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  180. {'params': no_decayed_params},
  181. {'order_params': net.trainable_params()}]
  182. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  183. if args_opt.dataset == "imagenet2012":
  184. if not config.use_label_smooth:
  185. config.label_smooth_factor = 0.0
  186. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  187. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  188. else:
  189. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  190. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  191. dist_eval_network = ClassifyCorrectCell(net) if args_opt.run_distribute else None
  192. metrics = {"acc"}
  193. if args_opt.run_distribute:
  194. metrics = {'acc': DistAccuracy(batch_size=config.batch_size, device_num=args_opt.device_num)}
  195. if (args_opt.net not in ("resnet18", "resnet50", "resnet101")) or \
  196. args_opt.parameter_server or target == "CPU":
  197. ## fp32 training
  198. model = Model(net, loss_fn=loss, optimizer=opt, metrics=metrics, eval_network=dist_eval_network)
  199. else:
  200. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=metrics,
  201. amp_level="O2", keep_batchnorm_fp32=False, eval_network=dist_eval_network)
  202. if cfg.optimizer == "Thor" and args_opt.dataset == "imagenet2012":
  203. from src.lr_generator import get_thor_damping
  204. damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
  205. split_indices = [26, 53]
  206. opt = THOR(net, lr, Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
  207. config.batch_size, split_indices=split_indices)
  208. model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
  209. loss_scale_manager=loss_scale, metrics={'acc'},
  210. amp_level="O2", keep_batchnorm_fp32=False,
  211. frequency=config.frequency)
  212. args_opt.run_eval = False
  213. logger.warning("Thor optimizer not support evaluation while training.")
  214. # define callbacks
  215. time_cb = TimeMonitor(data_size=step_size)
  216. loss_cb = LossMonitor()
  217. cb = [time_cb, loss_cb]
  218. if config.save_checkpoint:
  219. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  220. keep_checkpoint_max=config.keep_checkpoint_max)
  221. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  222. cb += [ckpt_cb]
  223. if args_opt.run_eval:
  224. if args_opt.eval_dataset_path is None or (not os.path.isdir(args_opt.eval_dataset_path)):
  225. raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
  226. eval_dataset = create_dataset(dataset_path=args_opt.eval_dataset_path, do_train=False,
  227. batch_size=config.batch_size, target=target, enable_cache=args_opt.enable_cache,
  228. cache_session_id=args_opt.cache_session_id)
  229. eval_param_dict = {"model": model, "dataset": eval_dataset, "metrics_name": "acc"}
  230. eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
  231. eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=args_opt.save_best_ckpt,
  232. ckpt_directory=ckpt_save_dir, besk_ckpt_name="best_acc.ckpt",
  233. metrics_name="acc")
  234. cb += [eval_cb]
  235. # train model
  236. if args_opt.net == "se-resnet50":
  237. config.epoch_size = config.train_epoch_size
  238. dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
  239. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  240. sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)