|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- # InceptionV4 for Ascend/GPU
-
- - [InceptionV4 Description](#InceptionV4-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Training Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [InceptionV4 Description](#contents)
-
- Inception-v4 is a convolutional neural network architecture that builds on previous iterations of the Inception family by simplifying the architecture and using more inception modules than Inception-v3. This idea was proposed in the paper Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, published in 2016.
-
- [Paper](https://arxiv.org/pdf/1602.07261.pdf) Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Computer Vision and Pattern Recognition[J]. 2016.
-
- # [Model architecture](#contents)
-
- The overall network architecture of InceptionV4 is show below:
-
- [Link](https://arxiv.org/pdf/1602.07261.pdf)
-
- # [Dataset](#contents)
-
- Dataset used can refer to paper.
-
- - Dataset size: 125G, 1250k colorful images in 1000 classes
- - Train: 120G, 1200k images
- - Test: 5G, 50k images
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
- # [Features](#contents)
-
- ## [Mixed Precision(Ascend)](#contents)
-
- The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
-
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend processor.
- - or prepare GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Script description](#contents)
-
- ## [Script and sample code](#contents)
-
- ```shell
- .
- └─Inception-v4
- ├─README.md
- ├─scripts
- ├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p)
- ├─run_eval_gpu.sh # launch evaluating with gpu platform
- ├─run_standalone_train_ascend.sh # launch standalone training with ascend platform(1p)
- ├─run_distribute_train_ascend.sh # launch distributed training with ascend platform(8p)
- └─run_eval_ascend.sh # launch evaluating with ascend platform
- ├─src
- ├─config.py # parameter configuration
- ├─dataset.py # data preprocessing
- ├─inceptionv4.py # network definition
- └─callback.py # eval callback function
- ├─eval.py # eval net
- ├─export.py # export checkpoint, surpport .onnx, .air, .mindir convert
- └─train.py # train net
- ```
-
- ## [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py are:
- 'is_save_on_master' # save checkpoint only on master device
- 'batch_size' # input batchsize
- 'epoch_size' # total epoch numbers
- 'num_classes' # dataset class numbers
- 'work_nums' # number of workers to read data
- 'loss_scale' # loss scale
- 'smooth_factor' # label smoothing factor
- 'weight_decay' # weight decay
- 'momentum' # momentum
- 'amp_level' # precision training, Supports [O0, O2, O3]
- 'decay' # decay used in optimize function
- 'epsilon' # epsilon used in iptimize function
- 'keep_checkpoint_max' # max numbers to keep checkpoints
- 'save_checkpoint_epochs' # save checkpoints per n epoch
- 'lr_init' # init leaning rate
- 'lr_end' # end of learning rate
- 'lr_max' # max bound of learning rate
- 'warmup_epochs' # warmup epoch numbers
- 'start_epoch' # number of start epoch range[1, epoch_size]
- ```
-
- ## [Training process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend:
-
- ```bash
- # distribute training example(8p)
- sh scripts/run_distribute_train_ascend.sh RANK_TABLE_FILE DATA_PATH DATA_DIR
- # standalone training
- sh scripts/run_standalone_train_ascend.sh DEVICE_ID DATA_DIR
- ```
-
- > Notes:
- > RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). For large models like InceptionV4, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.
- >
- > This is processor cores binding operation regarding the `device_num` and total processor numbers. If you are not expect to do it, remove the operations `taskset` in `scripts/run_distribute_train.sh`
-
- - GPU:
-
- ```bash
- # distribute training example(8p)
- sh scripts/run_distribute_train_gpu.sh DATA_PATH
- ```
-
- ### Launch
-
- ```bash
- # training example
- shell:
- Ascend:
- # distribute training example(8p)
- sh scripts/run_distribute_train_ascend.sh RANK_TABLE_FILE DATA_PATH DATA_DIR
- # standalone training
- sh scripts/run_standalone_train_ascend.sh DEVICE_ID DATA_DIR
- GPU:
- # distribute training example(8p)
- sh scripts/run_distribute_train_gpu.sh DATA_PATH
- ```
-
- ### Result
-
- Training result will be stored in the example path. Checkpoints will be stored at `ckpt_path` by default, and training log will be redirected to `./log.txt` like following.
-
- - Ascend
-
- ```python
- epoch: 1 step: 1251, loss is 5.4833196
- Epoch time: 520274.060, per step time: 415.887
- epoch: 2 step: 1251, loss is 4.093194
- Epoch time: 288520.628, per step time: 230.632
- epoch: 3 step: 1251, loss is 3.6242008
- Epoch time: 288507.506, per step time: 230.622
- ```
-
- - GPU
-
- ```python
- epoch: 1 step: 1251, loss is 6.49775
- Epoch time: 1487493.604, per step time: 1189.044
- epoch: 2 step: 1251, loss is 5.6884665
- Epoch time: 1421838.433, per step time: 1136.561
- epoch: 3 step: 1251, loss is 5.5168786
- Epoch time: 1423009.501, per step time: 1137.498
- ```
-
- ## [Eval process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend:
-
- ```bash
- sh scripts/run_eval_ascend.sh DEVICE_ID DATA_DIR CHECKPOINT_PATH
- ```
-
- - GPU
-
- ```bash
- sh scripts/run_eval_gpu.sh DATA_DIR CHECKPOINT_PATH
- ```
-
- ### Launch
-
- ```bash
- # eval example
- shell:
- Ascend:
- sh scripts/run_eval_ascend.sh DEVICE_ID DATA_DIR CHECKPOINT_PATH
- GPU:
- sh scripts/run_eval_gpu.sh DATA_DIR CHECKPOINT_PATH
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- Evaluation result will be stored in the example path, you can find result like the following in `eval.log`.
-
- - Ascend
-
- ```python
- metric: {'Loss': 0.9849, 'Top1-Acc':0.7985, 'Top5-Acc':0.9460}
- ```
-
- - GPU(8p)
-
- ```python
- metric: {'Loss': 0.8144, 'Top1-Acc': 0.8009, 'Top5-Acc': 0.9457}
- ```
-
- # [Model description](#contents)
-
- ## [Performance](#contents)
-
- ### Training Performance
-
- | Parameters | Ascend | GPU |
- | -------------------------- | --------------------------------------------- | -------------------------------- |
- | Model Version | InceptionV4 | InceptionV4 |
- | Resource | Ascend 910; cpu 2.60GHz, 192cores; memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
- | uploaded Date | 11/04/2020 | 03/05/2021 |
- | MindSpore Version | 1.0.0 | 1.0.0 |
- | Dataset | 1200k images | 1200K images |
- | Batch_size | 128 | 128 |
- | Training Parameters | src/config.py (Ascend) | src/config.py (GPU) |
- | Optimizer | RMSProp | RMSProp |
- | Loss Function | SoftmaxCrossEntropyWithLogits | SoftmaxCrossEntropyWithLogits |
- | Outputs | probability | probability |
- | Loss | 0.98486 | 0.8144 |
- | Accuracy (8p) | ACC1[79.85%] ACC5[94.60%] | ACC1[80.09%] ACC5[94.57%] |
- | Total time (8p) | 20h | 95h |
- | Params (M) | 153M | 153M |
- | Checkpoint for Fine tuning | 2135M | 489M |
- | Scripts | [inceptionv4 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv4) | [inceptionv4 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv4) |
-
- #### Inference Performance
-
- | Parameters | Ascend | GPU |
- | ------------------- | --------------------------------------------- | ---------------------------------- |
- | Model Version | InceptionV4 | InceptionV4 |
- | Resource | Ascend 910; cpu 2.60GHz, 192cores; memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
- | Uploaded Date | 11/04/2020 | 03/05/2021 |
- | MindSpore Version | 1.0.0 | 1.0.0 |
- | Dataset | 50k images | 50K images |
- | Batch_size | 128 | 128 |
- | Outputs | probability | probability |
- | Accuracy | ACC1[79.85%] ACC5[94.60%] | ACC1[80.09%] ACC5[94.57%] |
- | Total time | 2mins | 2mins |
- | Model for inference | 2135M (.ckpt file) | 489M (.ckpt file) |
-
- #### Training performance results
-
- | **Ascend** | train performance |
- | :--------: | :---------------: |
- | 1p | 556 img/s |
-
- | **Ascend** | train performance |
- | :--------: | :---------------: |
- | 8p | 4430 img/s |
-
- | **GPU** | train performance |
- | :--------: | :---------------: |
- | 8p | 906 img/s |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|