You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.5 kB

4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## train alexnet example ########################
  17. train alexnet and get network model files(.ckpt) :
  18. python train.py --data_path /YourDataPath
  19. """
  20. import os
  21. # import sys
  22. # sys.path.append(os.path.join(os.getcwd(), 'utils'))
  23. from utils.config import config
  24. from utils.moxing_adapter import moxing_wrapper
  25. from utils.device_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
  26. # from src.config import alexnet_cifar10_config, alexnet_imagenet_config
  27. from src.dataset import create_dataset_cifar10, create_dataset_imagenet
  28. from src.generator_lr import get_lr_cifar10, get_lr_imagenet
  29. from src.alexnet import AlexNet
  30. from src.get_param_groups import get_param_groups
  31. import mindspore.nn as nn
  32. from mindspore.communication.management import init, get_rank
  33. from mindspore import dataset as de
  34. from mindspore import context
  35. from mindspore import Tensor
  36. from mindspore.train import Model
  37. from mindspore.context import ParallelMode
  38. from mindspore.nn.metrics import Accuracy
  39. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  40. from mindspore.common import set_seed
  41. set_seed(1)
  42. de.config.set_seed(1)
  43. if os.path.exists(config.data_path_local):
  44. config.data_path = config.data_path_local
  45. config.checkpoint_path = os.path.join(config.checkpoint_path, str(get_rank_id()))
  46. else:
  47. config.checkpoint_path = os.path.join(config.output_path, config.checkpoint_path, str(get_rank_id()))
  48. def modelarts_pre_process():
  49. pass
  50. @moxing_wrapper(pre_process=modelarts_pre_process)
  51. def train_alexnet():
  52. print(config)
  53. print('device id:', get_device_id())
  54. print('device num:', get_device_num())
  55. print('rank id:', get_rank_id())
  56. print('job id:', get_job_id())
  57. device_target = config.device_target
  58. context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
  59. context.set_context(save_graphs=False)
  60. device_num = get_device_num()
  61. if config.dataset_name == "cifar10":
  62. if device_num > 1:
  63. config.learning_rate = config.learning_rate * device_num
  64. config.epoch_size = config.epoch_size * 2
  65. elif config.dataset_name == "imagenet":
  66. pass
  67. else:
  68. raise ValueError("Unsupported dataset.")
  69. if device_num > 1:
  70. context.reset_auto_parallel_context()
  71. context.set_auto_parallel_context(device_num=device_num, \
  72. parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True)
  73. if device_target == "Ascend":
  74. context.set_context(device_id=get_device_id())
  75. init()
  76. elif device_target == "GPU":
  77. init()
  78. else:
  79. context.set_context(device_id=get_device_id())
  80. if config.dataset_name == "cifar10":
  81. ds_train = create_dataset_cifar10(config.data_path, config.batch_size, target=config.device_target)
  82. elif config.dataset_name == "imagenet":
  83. ds_train = create_dataset_imagenet(config.data_path, config.batch_size)
  84. else:
  85. raise ValueError("Unsupported dataset.")
  86. if ds_train.get_dataset_size() == 0:
  87. raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
  88. network = AlexNet(config.num_classes, phase='train')
  89. loss_scale_manager = None
  90. metrics = None
  91. step_per_epoch = ds_train.get_dataset_size() if config.sink_size == -1 else config.sink_size
  92. if config.dataset_name == 'cifar10':
  93. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  94. lr = Tensor(get_lr_cifar10(0, config.learning_rate, config.epoch_size, step_per_epoch))
  95. opt = nn.Momentum(network.trainable_params(), lr, config.momentum)
  96. metrics = {"Accuracy": Accuracy()}
  97. elif config.dataset_name == 'imagenet':
  98. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  99. lr = Tensor(get_lr_imagenet(config.learning_rate, config.epoch_size, step_per_epoch))
  100. opt = nn.Momentum(params=get_param_groups(network),
  101. learning_rate=lr,
  102. momentum=config.momentum,
  103. weight_decay=config.weight_decay,
  104. loss_scale=config.loss_scale)
  105. from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager
  106. if config.is_dynamic_loss_scale == 1:
  107. loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
  108. else:
  109. loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  110. else:
  111. raise ValueError("Unsupported dataset.")
  112. if device_target == "Ascend":
  113. model = Model(network, loss_fn=loss, optimizer=opt, metrics=metrics, amp_level="O2", keep_batchnorm_fp32=False,
  114. loss_scale_manager=loss_scale_manager)
  115. elif device_target == "GPU":
  116. model = Model(network, loss_fn=loss, optimizer=opt, metrics=metrics, loss_scale_manager=loss_scale_manager)
  117. else:
  118. raise ValueError("Unsupported platform.")
  119. if device_num > 1:
  120. ckpt_save_dir = os.path.join(config.checkpoint_path + "_" + str(get_rank()))
  121. else:
  122. ckpt_save_dir = config.checkpoint_path
  123. time_cb = TimeMonitor(data_size=step_per_epoch)
  124. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  125. keep_checkpoint_max=config.keep_checkpoint_max)
  126. ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck)
  127. print("============== Starting Training ==============")
  128. model.train(config.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
  129. dataset_sink_mode=config.dataset_sink_mode, sink_size=config.sink_size)
  130. if __name__ == "__main__":
  131. train_alexnet()