|
|
|
@@ -44,6 +44,7 @@ if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') |
|
|
|
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], |
|
|
|
help='dataset name.') |
|
|
|
parser.add_argument('--sink_size', type=int, default=-1, help='control the amount of data in each sink') |
|
|
|
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], |
|
|
|
help='device where the code will be implemented (default: Ascend)') |
|
|
|
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') |
|
|
|
@@ -98,17 +99,16 @@ if __name__ == "__main__": |
|
|
|
|
|
|
|
loss_scale_manager = None |
|
|
|
metrics = None |
|
|
|
step_per_epoch = ds_train.get_dataset_size() if args.sink_size == -1 else args.sink_size |
|
|
|
if args.dataset_name == 'cifar10': |
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) |
|
|
|
lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, step_per_epoch)) |
|
|
|
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) |
|
|
|
metrics = {"Accuracy": Accuracy()} |
|
|
|
|
|
|
|
elif args.dataset_name == 'imagenet': |
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
|
|
|
|
lr = Tensor(get_lr_imagenet(cfg, ds_train.get_dataset_size())) |
|
|
|
|
|
|
|
lr = Tensor(get_lr_imagenet(cfg, step_per_epoch)) |
|
|
|
opt = nn.Momentum(params=get_param_groups(network), |
|
|
|
learning_rate=lr, |
|
|
|
momentum=cfg.momentum, |
|
|
|
@@ -137,11 +137,11 @@ if __name__ == "__main__": |
|
|
|
else: |
|
|
|
ckpt_save_dir = args.ckpt_path |
|
|
|
|
|
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) |
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), |
|
|
|
time_cb = TimeMonitor(data_size=step_per_epoch) |
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, |
|
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max) |
|
|
|
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck) |
|
|
|
|
|
|
|
print("============== Starting Training ==============") |
|
|
|
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], |
|
|
|
dataset_sink_mode=args.dataset_sink_mode) |
|
|
|
dataset_sink_mode=args.dataset_sink_mode, sink_size=args.sink_size) |