You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.9 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  26. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.communication.management import init, get_rank, get_group_size
  29. from mindspore.common import set_seed
  30. import mindspore.nn as nn
  31. import mindspore.common.initializer as weight_init
  32. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  33. from src.CrossEntropySmooth import CrossEntropySmooth
  34. parser = argparse.ArgumentParser(description='Image classification')
  35. parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
  36. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  37. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  38. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  39. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  40. parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
  41. help="Device target, support Ascend, GPU and CPU.")
  42. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  43. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  44. args_opt = parser.parse_args()
  45. set_seed(1)
  46. if args_opt.net == "resnet50":
  47. from src.resnet import resnet50 as resnet
  48. if args_opt.dataset == "cifar10":
  49. from src.config import config1 as config
  50. from src.dataset import create_dataset1 as create_dataset
  51. else:
  52. from src.config import config2 as config
  53. from src.dataset import create_dataset2 as create_dataset
  54. elif args_opt.net == "resnet101":
  55. from src.resnet import resnet101 as resnet
  56. from src.config import config3 as config
  57. from src.dataset import create_dataset3 as create_dataset
  58. else:
  59. from src.resnet import se_resnet50 as resnet
  60. from src.config import config4 as config
  61. from src.dataset import create_dataset4 as create_dataset
  62. if __name__ == '__main__':
  63. target = args_opt.device_target
  64. if target == "CPU":
  65. args_opt.run_distribute = False
  66. ckpt_save_dir = config.save_checkpoint_path
  67. # init context
  68. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  69. if args_opt.parameter_server:
  70. context.set_ps_context(enable_ps=True)
  71. if args_opt.run_distribute:
  72. if target == "Ascend":
  73. device_id = int(os.getenv('DEVICE_ID'))
  74. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  75. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  76. gradients_mean=True)
  77. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  78. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  79. else:
  80. context.set_auto_parallel_context(all_reduce_fusion_config=[180, 313])
  81. init()
  82. # GPU target
  83. else:
  84. init()
  85. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  86. gradients_mean=True)
  87. if args_opt.net == "resnet50":
  88. context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
  89. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  90. # create dataset
  91. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  92. batch_size=config.batch_size, target=target, distribute=args_opt.run_distribute)
  93. step_size = dataset.get_dataset_size()
  94. # define net
  95. net = resnet(class_num=config.class_num)
  96. if args_opt.parameter_server:
  97. net.set_param_ps()
  98. # init weight
  99. if args_opt.pre_trained:
  100. param_dict = load_checkpoint(args_opt.pre_trained)
  101. load_param_into_net(net, param_dict)
  102. else:
  103. for _, cell in net.cells_and_names():
  104. if isinstance(cell, nn.Conv2d):
  105. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  106. cell.weight.shape,
  107. cell.weight.dtype))
  108. if isinstance(cell, nn.Dense):
  109. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  110. cell.weight.shape,
  111. cell.weight.dtype))
  112. # init lr
  113. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  114. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  115. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  116. lr_decay_mode=config.lr_decay_mode)
  117. else:
  118. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
  119. config.pretrain_epoch_size * step_size)
  120. lr = Tensor(lr)
  121. # define opt
  122. decayed_params = []
  123. no_decayed_params = []
  124. for param in net.trainable_params():
  125. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  126. decayed_params.append(param)
  127. else:
  128. no_decayed_params.append(param)
  129. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  130. {'params': no_decayed_params},
  131. {'order_params': net.trainable_params()}]
  132. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  133. # define loss, model
  134. if target == "Ascend":
  135. if args_opt.dataset == "imagenet2012":
  136. if not config.use_label_smooth:
  137. config.label_smooth_factor = 0.0
  138. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  139. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  140. else:
  141. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  142. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  143. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  144. amp_level="O2", keep_batchnorm_fp32=False)
  145. else:
  146. # GPU and CPU target
  147. if args_opt.dataset == "imagenet2012":
  148. if not config.use_label_smooth:
  149. config.label_smooth_factor = 0.0
  150. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  151. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  152. else:
  153. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  154. if (args_opt.net == "resnet101" or args_opt.net == "resnet50") and \
  155. not args_opt.parameter_server and target != "CPU":
  156. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
  157. config.loss_scale)
  158. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  159. # Mixed precision
  160. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  161. amp_level="O2", keep_batchnorm_fp32=False)
  162. else:
  163. ## fp32 training
  164. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
  165. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  166. # define callbacks
  167. time_cb = TimeMonitor(data_size=step_size)
  168. loss_cb = LossMonitor()
  169. cb = [time_cb, loss_cb]
  170. if config.save_checkpoint:
  171. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  172. keep_checkpoint_max=config.keep_checkpoint_max)
  173. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  174. cb += [ckpt_cb]
  175. # train model
  176. if args_opt.net == "se-resnet50":
  177. config.epoch_size = config.train_epoch_size
  178. dataset_sink_mode = (not args_opt.parameter_server) and target != "CPU"
  179. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  180. sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)