You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

example.py 3.6 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. # coding: utf-8
  2. # ================================================================#
  3. # Copyright (C) 2021 Freecss All rights reserved.
  4. #
  5. # File Name :share_example.py
  6. # Author :freecss
  7. # Email :karlfreecss@gmail.com
  8. # Created Date :2021/06/07
  9. # Description :
  10. #
  11. # ================================================================#
  12. from utils.plog import logger, INFO
  13. from utils.utils import reduce_dimension
  14. import torch.nn as nn
  15. import torch
  16. from models.nn import LeNet5, SymbolNet
  17. from models.basic_model import BasicModel, BasicDataset
  18. from models.wabl_models import DecisionTree, WABLBasicModel
  19. from sklearn.neighbors import KNeighborsClassifier
  20. from multiprocessing import Pool
  21. from abducer.abducer_base import AbducerBase
  22. from abducer.kb import add_KB, HWF_KB, HED_prolog_KB
  23. from datasets.mnist_add.get_mnist_add import get_mnist_add
  24. from datasets.hwf.get_hwf import get_hwf
  25. from datasets.hed.get_hed import get_hed, split_equation
  26. import framework_hed
  27. import framework_hed_knn
  28. def run_test():
  29. # kb = add_KB(True)
  30. # kb = HWF_KB(True)
  31. # abducer = AbducerBase(kb)
  32. kb = HED_prolog_KB()
  33. abducer = AbducerBase(kb, zoopt=True, multiple_predictions=True)
  34. recorder = logger()
  35. total_train_data = get_hed(train=True)
  36. train_data, val_data = split_equation(total_train_data, 3, 1)
  37. test_data = get_hed(train=False)
  38. # ======================== non-NN model ========================== #
  39. reduce_dimension(train_data)
  40. reduce_dimension(val_data)
  41. reduce_dimension(test_data)
  42. base_model = KNeighborsClassifier(n_neighbors=3)
  43. pretrain_data_X, pretrain_data_Y = framework_hed_knn.hed_pretrain(base_model)
  44. model = WABLBasicModel(base_model, kb.pseudo_label_list)
  45. model, mapping = framework_hed_knn.train_with_rule(
  46. model, abducer, train_data, val_data, (pretrain_data_X, pretrain_data_Y), select_num=10, min_len=5, max_len=8
  47. )
  48. framework_hed_knn.hed_test(
  49. model, abducer, mapping, train_data, test_data, min_len=5, max_len=8
  50. )
  51. # ============================ End =============================== #
  52. # ========================== NN model ============================ #
  53. # # cls = LeNet5(num_classes=len(kb.pseudo_label_list), image_size=(train_data[0][0][0].shape[1:]))
  54. # cls = SymbolNet(num_classes=len(kb.pseudo_label_list))
  55. # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  56. # framework_hed.hed_pretrain(kb, cls, recorder)
  57. # criterion = nn.CrossEntropyLoss()
  58. # optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-6)
  59. # # optimizer = torch.optim.Adam(cls.parameters(), lr=0.00001, betas=(0.9, 0.99))
  60. # base_model = BasicModel(cls, criterion, optimizer, device, save_interval=1, save_dir=recorder.save_dir, batch_size=32, num_epochs=10, recorder=recorder)
  61. # model = WABLBasicModel(base_model, kb.pseudo_label_list)
  62. # # train_X, train_Z, train_Y = get_mnist_add(train = True, get_pseudo_label = True)
  63. # # test_X, test_Z, test_Y = get_mnist_add(train = False, get_pseudo_label = True)
  64. # # train_data = get_hwf(train = True, get_pseudo_label = True)
  65. # # test_data = get_hwf(train = False, get_pseudo_label = True)
  66. # model, mapping = framework_hed.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8)
  67. # framework_hed.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8)
  68. # ============================ End =============================== #
  69. recorder.dump()
  70. return True
  71. if __name__ == "__main__":
  72. run_test()

An efficient Python toolkit for Abductive Learning (ABL), a novel paradigm that integrates machine learning and logical reasoning in a unified framework.