|
- # coding: utf-8
- # ================================================================#
- # Copyright (C) 2021 Freecss All rights reserved.
- #
- # File Name :share_example.py
- # Author :freecss
- # Email :karlfreecss@gmail.com
- # Created Date :2021/06/07
- # Description :
- #
- # ================================================================#
-
- from utils.plog import logger, INFO
- from utils.utils import reduce_dimension
- import torch.nn as nn
- import torch
-
- from models.nn import LeNet5, SymbolNet
- from models.basic_model import BasicModel, BasicDataset
- from models.wabl_models import DecisionTree, WABLBasicModel
- from sklearn.neighbors import KNeighborsClassifier
-
- from multiprocessing import Pool
- from abducer.abducer_base import AbducerBase
- from abducer.kb import add_KB, HWF_KB, HED_prolog_KB
- from datasets.mnist_add.get_mnist_add import get_mnist_add
- from datasets.hwf.get_hwf import get_hwf
- from datasets.hed.get_hed import get_hed, split_equation
- import framework_hed
- import framework_hed_knn
-
-
- def run_test():
-
- # kb = add_KB(True)
- # kb = HWF_KB(True)
- # abducer = AbducerBase(kb)
-
- kb = HED_prolog_KB()
- abducer = AbducerBase(kb, zoopt=True, multiple_predictions=True)
-
- recorder = logger()
-
- total_train_data = get_hed(train=True)
- train_data, val_data = split_equation(total_train_data, 3, 1)
- test_data = get_hed(train=False)
-
- # ======================== non-NN model ========================== #
- reduce_dimension(train_data)
- reduce_dimension(val_data)
- reduce_dimension(test_data)
- base_model = KNeighborsClassifier(n_neighbors=3)
- pretrain_data_X, pretrain_data_Y = framework_hed_knn.hed_pretrain(base_model)
- model = WABLBasicModel(base_model, kb.pseudo_label_list)
- model, mapping = framework_hed_knn.train_with_rule(
- model, abducer, train_data, val_data, (pretrain_data_X, pretrain_data_Y), select_num=10, min_len=5, max_len=8
- )
- framework_hed_knn.hed_test(
- model, abducer, mapping, train_data, test_data, min_len=5, max_len=8
- )
- # ============================ End =============================== #
-
- # ========================== NN model ============================ #
- # # cls = LeNet5(num_classes=len(kb.pseudo_label_list), image_size=(train_data[0][0][0].shape[1:]))
- # cls = SymbolNet(num_classes=len(kb.pseudo_label_list))
- # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- # framework_hed.hed_pretrain(kb, cls, recorder)
-
- # criterion = nn.CrossEntropyLoss()
- # optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-6)
- # # optimizer = torch.optim.Adam(cls.parameters(), lr=0.00001, betas=(0.9, 0.99))
-
- # base_model = BasicModel(cls, criterion, optimizer, device, save_interval=1, save_dir=recorder.save_dir, batch_size=32, num_epochs=10, recorder=recorder)
- # model = WABLBasicModel(base_model, kb.pseudo_label_list)
-
- # # train_X, train_Z, train_Y = get_mnist_add(train = True, get_pseudo_label = True)
- # # test_X, test_Z, test_Y = get_mnist_add(train = False, get_pseudo_label = True)
-
- # # train_data = get_hwf(train = True, get_pseudo_label = True)
- # # test_data = get_hwf(train = False, get_pseudo_label = True)
-
- # model, mapping = framework_hed.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8)
- # framework_hed.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8)
- # ============================ End =============================== #
-
- recorder.dump()
- return True
-
-
- if __name__ == "__main__":
- run_test()
|