|
|
|
@@ -24,7 +24,7 @@ from abducer.kb import add_KB, HWF_KB, HED_prolog_KB |
|
|
|
from datasets.mnist_add.get_mnist_add import get_mnist_add |
|
|
|
from datasets.hwf.get_hwf import get_hwf |
|
|
|
from datasets.hed.get_hed import get_hed, split_equation |
|
|
|
import framework |
|
|
|
import framework_hed |
|
|
|
|
|
|
|
|
|
|
|
def run_test(): |
|
|
|
@@ -46,7 +46,7 @@ def run_test(): |
|
|
|
cls = SymbolNet(num_classes=len(kb.pseudo_label_list)) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
framework.hed_pretrain(kb, cls, recorder) |
|
|
|
framework_hed.hed_pretrain(kb, cls, recorder) |
|
|
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
|
|
optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-6) |
|
|
|
@@ -62,8 +62,8 @@ def run_test(): |
|
|
|
# train_data = get_hwf(train = True, get_pseudo_label = True) |
|
|
|
# test_data = get_hwf(train = False, get_pseudo_label = True) |
|
|
|
|
|
|
|
model, mapping = framework.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8) |
|
|
|
framework.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8) |
|
|
|
model, mapping = framework_hed.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8) |
|
|
|
framework_hed.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8) |
|
|
|
|
|
|
|
recorder.dump() |
|
|
|
return True |
|
|
|
|