Browse Source

Add logistic save figures

savefigrue
bushuhui 4 years ago
parent
commit
69cad95d48
4 changed files with 12 additions and 9 deletions
  1. +12
    -9
      4_logistic_regression/2-Logistic_regression.ipynb
  2. BIN
      4_logistic_regression/logistic_pred_res.pdf
  3. BIN
      4_logistic_regression/logistic_train_data.pdf
  4. BIN
      4_logistic_regression/logstic_fuction.pdf

+ 12
- 9
4_logistic_regression/2-Logistic_regression.ipynb View File

@@ -52,7 +52,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@@ -80,6 +80,7 @@
"y=1/(1+np.e**(-X))\n", "y=1/(1+np.e**(-X))\n",
"plt.plot(X,y,'b-')\n", "plt.plot(X,y,'b-')\n",
"plt.title(\"Logistic function\")\n", "plt.title(\"Logistic function\")\n",
"plt.savefig(\"logstic_fuction.pdf\")\n",
"plt.show()" "plt.show()"
] ]
}, },
@@ -179,7 +180,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -195,7 +196,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@@ -204,7 +205,7 @@
"Text(0.5, 1.0, 'Original Data')" "Text(0.5, 1.0, 'Original Data')"
] ]
}, },
"execution_count": 3,
"execution_count": 6,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
@@ -226,16 +227,17 @@
"data, label = sklearn.datasets.make_moons(200, noise=0.30)\n", "data, label = sklearn.datasets.make_moons(200, noise=0.30)\n",
"\n", "\n",
"plt.scatter(data[:,0], data[:,1], c=label)\n", "plt.scatter(data[:,0], data[:,1], c=label)\n",
"plt.savefig(\"logistic_train_data.pdf\")\n",
"plt.title(\"Original Data\")" "plt.title(\"Original Data\")"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"def plot_decision_boundary(predict_func, data, label):\n",
"def plot_decision_boundary(predict_func, data, label, figName=None):\n",
" \"\"\"画出结果图\n", " \"\"\"画出结果图\n",
" Args:\n", " Args:\n",
" pred_func (callable): 预测函数\n", " pred_func (callable): 预测函数\n",
@@ -253,13 +255,14 @@
"\n", "\n",
" plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #画出登高线并填充\n", " plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #画出登高线并填充\n",
" plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral)\n", " plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral)\n",
" if figName != None: plt.savefig(figName)\n",
" plt.show()\n", " plt.show()\n",
"\n" "\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -305,7 +308,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@@ -324,7 +327,7 @@
"source": [ "source": [
"logistic = Logistic(data, label)\n", "logistic = Logistic(data, label)\n",
"logistic.train(200)\n", "logistic.train(200)\n",
"plot_decision_boundary(lambda x: logistic.predict(x), data, label)"
"plot_decision_boundary(lambda x: logistic.predict(x), data, label, \"logistic_pred_res.pdf\")"
] ]
}, },
{ {


BIN
4_logistic_regression/logistic_pred_res.pdf View File


BIN
4_logistic_regression/logistic_train_data.pdf View File


BIN
4_logistic_regression/logstic_fuction.pdf View File


Loading…
Cancel
Save