diff --git a/4_logistic_regression/2-Logistic_regression.ipynb b/4_logistic_regression/2-Logistic_regression.ipynb index dd31b7e..80a76d7 100644 --- a/4_logistic_regression/2-Logistic_regression.ipynb +++ b/4_logistic_regression/2-Logistic_regression.ipynb @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -80,6 +80,7 @@ "y=1/(1+np.e**(-X))\n", "plt.plot(X,y,'b-')\n", "plt.title(\"Logistic function\")\n", + "plt.savefig(\"logstic_fuction.pdf\")\n", "plt.show()" ] }, @@ -179,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -195,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -204,7 +205,7 @@ "Text(0.5, 1.0, 'Original Data')" ] }, - "execution_count": 3, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -226,16 +227,17 @@ "data, label = sklearn.datasets.make_moons(200, noise=0.30)\n", "\n", "plt.scatter(data[:,0], data[:,1], c=label)\n", + "plt.savefig(\"logistic_train_data.pdf\")\n", "plt.title(\"Original Data\")" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "def plot_decision_boundary(predict_func, data, label):\n", + "def plot_decision_boundary(predict_func, data, label, figName=None):\n", " \"\"\"画出结果图\n", " Args:\n", " pred_func (callable): 预测函数\n", @@ -253,13 +255,14 @@ "\n", " plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #画出登高线并填充\n", " plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral)\n", + " if figName != None: plt.savefig(figName)\n", " plt.show()\n", "\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -305,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -324,7 +327,7 @@ "source": [ "logistic = Logistic(data, label)\n", "logistic.train(200)\n", - "plot_decision_boundary(lambda x: logistic.predict(x), data, label)" + "plot_decision_boundary(lambda x: logistic.predict(x), data, label, \"logistic_pred_res.pdf\")" ] }, { diff --git a/4_logistic_regression/logistic_pred_res.pdf b/4_logistic_regression/logistic_pred_res.pdf new file mode 100644 index 0000000..e0bde22 Binary files /dev/null and b/4_logistic_regression/logistic_pred_res.pdf differ diff --git a/4_logistic_regression/logistic_train_data.pdf b/4_logistic_regression/logistic_train_data.pdf new file mode 100644 index 0000000..febdd4b Binary files /dev/null and b/4_logistic_regression/logistic_train_data.pdf differ diff --git a/4_logistic_regression/logstic_fuction.pdf b/4_logistic_regression/logstic_fuction.pdf new file mode 100644 index 0000000..5e26c60 Binary files /dev/null and b/4_logistic_regression/logstic_fuction.pdf differ