| @@ -0,0 +1,194 @@ | |||
| import libsvm.*; | |||
| import java.io.*; | |||
| import java.util.*; | |||
| class svm_predict { | |||
| private static svm_print_interface svm_print_null = new svm_print_interface() | |||
| { | |||
| public void print(String s) {} | |||
| }; | |||
| private static svm_print_interface svm_print_stdout = new svm_print_interface() | |||
| { | |||
| public void print(String s) | |||
| { | |||
| System.out.print(s); | |||
| } | |||
| }; | |||
| private static svm_print_interface svm_print_string = svm_print_stdout; | |||
| static void info(String s) | |||
| { | |||
| svm_print_string.print(s); | |||
| } | |||
| private static double atof(String s) | |||
| { | |||
| return Double.valueOf(s).doubleValue(); | |||
| } | |||
| private static int atoi(String s) | |||
| { | |||
| return Integer.parseInt(s); | |||
| } | |||
| private static void predict(BufferedReader input, DataOutputStream output, svm_model model, int predict_probability) throws IOException | |||
| { | |||
| int correct = 0; | |||
| int total = 0; | |||
| double error = 0; | |||
| double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; | |||
| int svm_type=svm.svm_get_svm_type(model); | |||
| int nr_class=svm.svm_get_nr_class(model); | |||
| double[] prob_estimates=null; | |||
| if(predict_probability == 1) | |||
| { | |||
| if(svm_type == svm_parameter.EPSILON_SVR || | |||
| svm_type == svm_parameter.NU_SVR) | |||
| { | |||
| svm_predict.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+svm.svm_get_svr_probability(model)+"\n"); | |||
| } | |||
| else | |||
| { | |||
| int[] labels=new int[nr_class]; | |||
| svm.svm_get_labels(model,labels); | |||
| prob_estimates = new double[nr_class]; | |||
| output.writeBytes("labels"); | |||
| for(int j=0;j<nr_class;j++) | |||
| output.writeBytes(" "+labels[j]); | |||
| output.writeBytes("\n"); | |||
| } | |||
| } | |||
| while(true) | |||
| { | |||
| String line = input.readLine(); | |||
| if(line == null) break; | |||
| StringTokenizer st = new StringTokenizer(line," \t\n\r\f:"); | |||
| double target = atof(st.nextToken()); | |||
| int m = st.countTokens()/2; | |||
| svm_node[] x = new svm_node[m]; | |||
| for(int j=0;j<m;j++) | |||
| { | |||
| x[j] = new svm_node(); | |||
| x[j].index = atoi(st.nextToken()); | |||
| x[j].value = atof(st.nextToken()); | |||
| } | |||
| double v; | |||
| if (predict_probability==1 && (svm_type==svm_parameter.C_SVC || svm_type==svm_parameter.NU_SVC)) | |||
| { | |||
| v = svm.svm_predict_probability(model,x,prob_estimates); | |||
| output.writeBytes(v+" "); | |||
| for(int j=0;j<nr_class;j++) | |||
| output.writeBytes(prob_estimates[j]+" "); | |||
| output.writeBytes("\n"); | |||
| } | |||
| else | |||
| { | |||
| v = svm.svm_predict(model,x); | |||
| output.writeBytes(v+"\n"); | |||
| } | |||
| if(v == target) | |||
| ++correct; | |||
| error += (v-target)*(v-target); | |||
| sumv += v; | |||
| sumy += target; | |||
| sumvv += v*v; | |||
| sumyy += target*target; | |||
| sumvy += v*target; | |||
| ++total; | |||
| } | |||
| if(svm_type == svm_parameter.EPSILON_SVR || | |||
| svm_type == svm_parameter.NU_SVR) | |||
| { | |||
| svm_predict.info("Mean squared error = "+error/total+" (regression)\n"); | |||
| svm_predict.info("Squared correlation coefficient = "+ | |||
| ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ | |||
| ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))+ | |||
| " (regression)\n"); | |||
| } | |||
| else | |||
| svm_predict.info("Accuracy = "+(double)correct/total*100+ | |||
| "% ("+correct+"/"+total+") (classification)\n"); | |||
| } | |||
| private static void exit_with_help() | |||
| { | |||
| System.err.print("usage: svm_predict [options] test_file model_file output_file\n" | |||
| +"options:\n" | |||
| +"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" | |||
| +"-q : quiet mode (no outputs)\n"); | |||
| System.exit(1); | |||
| } | |||
| public static void main(String argv[]) throws IOException | |||
| { | |||
| int i, predict_probability=0; | |||
| svm_print_string = svm_print_stdout; | |||
| // parse options | |||
| for(i=0;i<argv.length;i++) | |||
| { | |||
| if(argv[i].charAt(0) != '-') break; | |||
| ++i; | |||
| switch(argv[i-1].charAt(1)) | |||
| { | |||
| case 'b': | |||
| predict_probability = atoi(argv[i]); | |||
| break; | |||
| case 'q': | |||
| svm_print_string = svm_print_null; | |||
| i--; | |||
| break; | |||
| default: | |||
| System.err.print("Unknown option: " + argv[i-1] + "\n"); | |||
| exit_with_help(); | |||
| } | |||
| } | |||
| if(i>=argv.length-2) | |||
| exit_with_help(); | |||
| try | |||
| { | |||
| BufferedReader input = new BufferedReader(new FileReader(argv[i])); | |||
| DataOutputStream output = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(argv[i+2]))); | |||
| svm_model model = svm.svm_load_model(argv[i+1]); | |||
| if (model == null) | |||
| { | |||
| System.err.print("can't open model file "+argv[i+1]+"\n"); | |||
| System.exit(1); | |||
| } | |||
| if(predict_probability == 1) | |||
| { | |||
| if(svm.svm_check_probability_model(model)==0) | |||
| { | |||
| System.err.print("Model does not support probabiliy estimates\n"); | |||
| System.exit(1); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| if(svm.svm_check_probability_model(model)!=0) | |||
| { | |||
| svm_predict.info("Model supports probability estimates, but disabled in prediction.\n"); | |||
| } | |||
| } | |||
| predict(input,output,model,predict_probability); | |||
| input.close(); | |||
| output.close(); | |||
| } | |||
| catch(FileNotFoundException e) | |||
| { | |||
| exit_with_help(); | |||
| } | |||
| catch(ArrayIndexOutOfBoundsException e) | |||
| { | |||
| exit_with_help(); | |||
| } | |||
| } | |||
| } | |||