| @@ -9,10 +9,11 @@ import numpy as np | |||
| import networkx as nx | |||
| import multiprocessing | |||
| import time | |||
| from gklearn.utils import normalize_gram_matrix | |||
| class GraphKernel(object): | |||
| def __init__(self): | |||
| self._graphs = None | |||
| self._parallel = '' | |||
| @@ -22,14 +23,14 @@ class GraphKernel(object): | |||
| self._run_time = 0 | |||
| self._gram_matrix = None | |||
| self._gram_matrix_unnorm = None | |||
| def compute(self, *graphs, **kwargs): | |||
| self._parallel = kwargs.get('parallel', 'imap_unordered') | |||
| self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | |||
| self._normalize = kwargs.get('normalize', True) | |||
| self._verbose = kwargs.get('verbose', 2) | |||
| if len(graphs) == 1: | |||
| if not isinstance(graphs[0], list): | |||
| raise Exception('Cannot detect graphs.') | |||
| @@ -40,9 +41,9 @@ class GraphKernel(object): | |||
| self._gram_matrix = self._compute_gram_matrix() | |||
| self._gram_matrix_unnorm = np.copy(self._gram_matrix) | |||
| if self._normalize: | |||
| self._gram_matrix = self.normalize_gm(self._gram_matrix) | |||
| self._gram_matrix = normalize_gram_matrix(self._gram_matrix) | |||
| return self._gram_matrix, self._run_time | |||
| elif len(graphs) == 2: | |||
| if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | |||
| kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | |||
| @@ -59,14 +60,14 @@ class GraphKernel(object): | |||
| return kernel_list, self._run_time | |||
| else: | |||
| raise Exception('Cannot detect graphs.') | |||
| elif len(graphs) == 0 and self._graphs is None: | |||
| raise Exception('Please add graphs before computing.') | |||
| else: | |||
| raise Exception('Cannot detect graphs.') | |||
| def normalize_gm(self, gram_matrix): | |||
| import warnings | |||
| warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | |||
| @@ -77,8 +78,8 @@ class GraphKernel(object): | |||
| gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | |||
| gram_matrix[j][i] = gram_matrix[i][j] | |||
| return gram_matrix | |||
| def compute_distance_matrix(self): | |||
| if self._gram_matrix is None: | |||
| raise Exception('Please compute the Gram matrix before computing distance matrix.') | |||
| @@ -97,98 +98,98 @@ class GraphKernel(object): | |||
| dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | |||
| dis_mean = np.mean(np.mean(dis_mat)) | |||
| return dis_mat, dis_max, dis_min, dis_mean | |||
| def _compute_gram_matrix(self): | |||
| start_time = time.time() | |||
| if self._parallel == 'imap_unordered': | |||
| gram_matrix = self._compute_gm_imap_unordered() | |||
| elif self._parallel is None: | |||
| gram_matrix = self._compute_gm_series() | |||
| else: | |||
| raise Exception('Parallel mode is not set correctly.') | |||
| self._run_time = time.time() - start_time | |||
| if self._verbose: | |||
| print('Gram matrix of size %d built in %s seconds.' | |||
| % (len(self._graphs), self._run_time)) | |||
| return gram_matrix | |||
| def _compute_gm_series(self): | |||
| pass | |||
| def _compute_gm_imap_unordered(self): | |||
| pass | |||
| def _compute_kernel_list(self, g1, g_list): | |||
| start_time = time.time() | |||
| if self._parallel == 'imap_unordered': | |||
| kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | |||
| elif self._parallel is None: | |||
| kernel_list = self._compute_kernel_list_series(g1, g_list) | |||
| else: | |||
| raise Exception('Parallel mode is not set correctly.') | |||
| self._run_time = time.time() - start_time | |||
| if self._verbose: | |||
| print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | |||
| % (len(g_list), self._run_time)) | |||
| return kernel_list | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| pass | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| pass | |||
| def _compute_single_kernel(self, g1, g2): | |||
| start_time = time.time() | |||
| kernel = self._compute_single_kernel_series(g1, g2) | |||
| self._run_time = time.time() - start_time | |||
| if self._verbose: | |||
| print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | |||
| return kernel | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| pass | |||
| def is_graph(self, graph): | |||
| if isinstance(graph, nx.Graph): | |||
| return True | |||
| if isinstance(graph, nx.DiGraph): | |||
| return True | |||
| return True | |||
| if isinstance(graph, nx.MultiGraph): | |||
| return True | |||
| return True | |||
| if isinstance(graph, nx.MultiDiGraph): | |||
| return True | |||
| return True | |||
| return False | |||
| @property | |||
| def graphs(self): | |||
| return self._graphs | |||
| @property | |||
| def parallel(self): | |||
| return self._parallel | |||
| @property | |||
| def n_jobs(self): | |||
| return self._n_jobs | |||
| @@ -197,30 +198,30 @@ class GraphKernel(object): | |||
| @property | |||
| def verbose(self): | |||
| return self._verbose | |||
| @property | |||
| def normalize(self): | |||
| return self._normalize | |||
| @property | |||
| def run_time(self): | |||
| return self._run_time | |||
| @property | |||
| def gram_matrix(self): | |||
| return self._gram_matrix | |||
| @gram_matrix.setter | |||
| def gram_matrix(self, value): | |||
| self._gram_matrix = value | |||
| @property | |||
| def gram_matrix_unnorm(self): | |||
| return self._gram_matrix_unnorm | |||
| return self._gram_matrix_unnorm | |||
| @gram_matrix_unnorm.setter | |||
| def gram_matrix_unnorm(self, value): | |||
| @@ -12,7 +12,7 @@ GRAPH_KERNELS = { | |||
| 'common walk': '', | |||
| 'marginalized': '', | |||
| 'sylvester equation': '', | |||
| 'fixed_point': '', | |||
| 'fixed point': '', | |||
| 'conjugate gradient': '', | |||
| 'spectral decomposition': '', | |||
| ### based on paths. | |||
| @@ -5,9 +5,9 @@ Created on Tue Apr 7 15:24:58 2020 | |||
| @author: ljia | |||
| @references: | |||
| [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||
| @references: | |||
| [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||
| Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | |||
| """ | |||
| @@ -23,13 +23,14 @@ from gklearn.kernels import GraphKernel | |||
| class ShortestPath(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| self._node_attrs = kwargs.get('node_attrs', []) | |||
| self._edge_weight = kwargs.get('edge_weight', None) | |||
| self._node_kernels = kwargs.get('node_kernels', None) | |||
| self._fcsp = kwargs.get('fcsp', True) | |||
| self._ds_infos = kwargs.get('ds_infos', {}) | |||
| @@ -40,10 +41,10 @@ class ShortestPath(GraphKernel): | |||
| else: | |||
| iterator = self._graphs | |||
| self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| @@ -54,10 +55,10 @@ class ShortestPath(GraphKernel): | |||
| kernel = self._sp_do(self._graphs[i], self._graphs[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| # get shortest path graph of each graph. | |||
| pool = Pool(self._n_jobs) | |||
| @@ -76,20 +77,20 @@ class ShortestPath(GraphKernel): | |||
| self._graphs[i] = g | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| def init_worker(gs_toshare): | |||
| global G_gs | |||
| G_gs = gs_toshare | |||
| do_fun = self._wrapper_sp_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| # get shortest path graphs of g1 and each graph in g_list. | |||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
| @@ -98,7 +99,7 @@ class ShortestPath(GraphKernel): | |||
| else: | |||
| iterator = g_list | |||
| g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| @@ -108,10 +109,10 @@ class ShortestPath(GraphKernel): | |||
| for i in iterator: | |||
| kernel = self._sp_do(g1, g_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| # get shortest path graphs of g1 and each graph in g_list. | |||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
| @@ -131,49 +132,57 @@ class ShortestPath(GraphKernel): | |||
| g_list[i] = g | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| kernel_list = [None] * len(g_list) | |||
| def init_worker(g1_toshare, gl_toshare): | |||
| global G_g1, G_gl | |||
| G_g1 = g1_toshare | |||
| G_gl = gl_toshare | |||
| G_g1 = g1_toshare | |||
| G_gl = gl_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._sp_do(G_g1, G_gl[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
| g2 = getSPGraph(g2, edge_weight=self._edge_weight) | |||
| kernel = self._sp_do(g1, g2) | |||
| return kernel | |||
| return kernel | |||
| def _wrapper_get_sp_graphs(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, getSPGraph(g, edge_weight=self._edge_weight) | |||
| def _sp_do(self, g1, g2): | |||
| if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||
| return self._sp_do_fcsp(g1, g2) | |||
| else: | |||
| return self._sp_do_naive(g1, g2) | |||
| def _sp_do_fcsp(self, g1, g2): | |||
| kernel = 0 | |||
| # compute shortest path matrices first, method borrowed from FCSP. | |||
| vk_dict = {} # shortest path matrices dict | |||
| if len(self._node_labels) > 0: | |||
| if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do(). | |||
| # node symb and non-synb labeled | |||
| if len(self._node_attrs) > 0: | |||
| kn = self._node_kernels['mix'] | |||
| @@ -208,7 +217,7 @@ class ShortestPath(GraphKernel): | |||
| if e1[2]['cost'] == e2[2]['cost']: | |||
| kernel += 1 | |||
| return kernel | |||
| # compute graph kernels | |||
| if self._ds_infos['directed']: | |||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| @@ -225,7 +234,7 @@ class ShortestPath(GraphKernel): | |||
| kn1 = nk11 * nk22 | |||
| kn2 = nk12 * nk21 | |||
| kernel += kn1 + kn2 | |||
| # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||
| # # compute vertex kernels | |||
| # try: | |||
| @@ -238,7 +247,7 @@ class ShortestPath(GraphKernel): | |||
| # vk_mat[i1][i2] = kn( | |||
| # n1[1][node_label], n2[1][node_label], | |||
| # [n1[1]['attributes']], [n2[1]['attributes']]) | |||
| # range1 = range(0, len(edge_w_g[i])) | |||
| # range2 = range(0, len(edge_w_g[j])) | |||
| # for i1 in range1: | |||
| @@ -254,10 +263,67 @@ class ShortestPath(GraphKernel): | |||
| # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | |||
| # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||
| # kernel += kn1 + kn2 | |||
| return kernel | |||
| def _sp_do_naive(self, g1, g2): | |||
| kernel = 0 | |||
| # Define the function to compute kernels between vertices in each condition. | |||
| if len(self._node_labels) > 0: | |||
| # node symb and non-synb labeled | |||
| if len(self._node_attrs) > 0: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['mix'] | |||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
| return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
| # node symb labeled | |||
| else: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['symb'] | |||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
| return kn(n1_labels, n2_labels) | |||
| else: | |||
| # node non-synb labeled | |||
| if len(self._node_attrs) > 0: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['nsymb'] | |||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
| return kn(n1_attrs, n2_attrs) | |||
| # node unlabeled | |||
| else: | |||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| if e1[2]['cost'] == e2[2]['cost']: | |||
| kernel += 1 | |||
| return kernel | |||
| # compute graph kernels | |||
| if self._ds_infos['directed']: | |||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| if e1[2]['cost'] == e2[2]['cost']: | |||
| nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1]) | |||
| kn1 = nk11 * nk22 | |||
| kernel += kn1 | |||
| else: | |||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| if e1[2]['cost'] == e2[2]['cost']: | |||
| # each edge walk is counted twice, starting from both its extreme nodes. | |||
| nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk( | |||
| e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1]) | |||
| kn1 = nk11 * nk22 | |||
| kn2 = nk12 * nk21 | |||
| kernel += kn1 + kn2 | |||
| return kernel | |||
| def _wrapper_sp_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| @@ -5,9 +5,9 @@ Created on Mon Mar 30 11:59:57 2020 | |||
| @author: ljia | |||
| @references: | |||
| @references: | |||
| [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
| [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
| Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | |||
| """ | |||
| import sys | |||
| @@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||
| class StructuralSP(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| @@ -34,6 +34,7 @@ class StructuralSP(GraphKernel): | |||
| self._node_kernels = kwargs.get('node_kernels', None) | |||
| self._edge_kernels = kwargs.get('edge_kernels', None) | |||
| self._compute_method = kwargs.get('compute_method', 'naive') | |||
| self._fcsp = kwargs.get('fcsp', True) | |||
| self._ds_infos = kwargs.get('ds_infos', {}) | |||
| @@ -50,10 +51,10 @@ class StructuralSP(GraphKernel): | |||
| else: | |||
| for g in iterator: | |||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| @@ -72,10 +73,10 @@ class StructuralSP(GraphKernel): | |||
| # print("error here ") | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| # get shortest paths of each graph in the graphs. | |||
| splist = [None] * len(self._graphs) | |||
| @@ -87,9 +88,9 @@ class StructuralSP(GraphKernel): | |||
| chunksize = 100 | |||
| # get shortest path graphs of self._graphs | |||
| if self._compute_method == 'trie': | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| else: | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| if self.verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | |||
| desc='getting shortest paths', file=sys.stdout) | |||
| @@ -99,24 +100,24 @@ class StructuralSP(GraphKernel): | |||
| splist[i] = sp | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| def init_worker(spl_toshare, gs_toshare): | |||
| global G_spl, G_gs | |||
| G_spl = spl_toshare | |||
| G_gs = gs_toshare | |||
| if self._compute_method == 'trie': | |||
| G_gs = gs_toshare | |||
| if self._compute_method == 'trie': | |||
| do_fun = self._wrapper_ssp_do_trie | |||
| else: | |||
| do_fun = self._wrapper_ssp_do_naive | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| else: | |||
| do_fun = self._wrapper_ssp_do_naive | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| # get shortest paths of g1 and each graph in g_list. | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| @@ -131,7 +132,7 @@ class StructuralSP(GraphKernel): | |||
| else: | |||
| for g in iterator: | |||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| @@ -146,10 +147,10 @@ class StructuralSP(GraphKernel): | |||
| for i in iterator: | |||
| kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| # get shortest paths of g1 and each graph in g_list. | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| @@ -162,9 +163,9 @@ class StructuralSP(GraphKernel): | |||
| chunksize = 100 | |||
| # get shortest path graphs of g_list | |||
| if self._compute_method == 'trie': | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| else: | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| if self.verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | |||
| desc='getting shortest paths', file=sys.stdout) | |||
| @@ -174,7 +175,7 @@ class StructuralSP(GraphKernel): | |||
| splist[i] = sp | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -182,27 +183,27 @@ class StructuralSP(GraphKernel): | |||
| global G_sp1, G_spl, G_g1, G_gl | |||
| G_sp1 = sp1_toshare | |||
| G_spl = spl_toshare | |||
| G_g1 = g1_toshare | |||
| G_gl = gl_toshare | |||
| if self._compute_method == 'trie': | |||
| G_g1 = g1_toshare | |||
| G_gl = gl_toshare | |||
| if self._compute_method == 'trie': | |||
| do_fun = self._wrapper_ssp_do_trie | |||
| else: | |||
| else: | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | |||
| @@ -210,26 +211,33 @@ class StructuralSP(GraphKernel): | |||
| kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | |||
| else: | |||
| kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | |||
| return kernel | |||
| return kernel | |||
| def _wrapper_get_sps_naive(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | |||
| def _ssp_do_naive(self, g1, g2, spl1, spl2): | |||
| if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||
| return self._sp_do_naive_fcsp(g1, g2, spl1, spl2) | |||
| else: | |||
| return self._sp_do_naive_naive(g1, g2, spl1, spl2) | |||
| def _sp_do_naive_fcsp(self, g1, g2, spl1, spl2): | |||
| kernel = 0 | |||
| # First, compute shortest path matrices, method borrowed from FCSP. | |||
| vk_dict = self._get_all_node_kernels(g1, g2) | |||
| # Then, compute kernels between all pairs of edges, which is an idea of | |||
| # extension of FCSP. It suits sparse graphs, which is the most case we | |||
| # went though. For dense graphs, this would be slow. | |||
| ek_dict = self._get_all_edge_kernels(g1, g2) | |||
| # compute graph kernels | |||
| if vk_dict: | |||
| if ek_dict: | |||
| @@ -279,7 +287,7 @@ class StructuralSP(GraphKernel): | |||
| print(g1.nodes(data=True)) | |||
| print(g1.edges(data=True)) | |||
| raise Exception | |||
| # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||
| # # compute vertex kernel matrix | |||
| # try: | |||
| @@ -292,7 +300,7 @@ class StructuralSP(GraphKernel): | |||
| # vk_mat[i1][i2] = kn( | |||
| # n1[1][node_label], n2[1][node_label], | |||
| # [n1[1]['attributes']], [n2[1]['attributes']]) | |||
| # range1 = range(0, len(edge_w_g[i])) | |||
| # range2 = range(0, len(edge_w_g[j])) | |||
| # for i1 in range1: | |||
| @@ -309,18 +317,136 @@ class StructuralSP(GraphKernel): | |||
| # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||
| # Kmatrix += kn1 + kn2 | |||
| return kernel | |||
| def _sp_do_naive_naive(self, g1, g2, spl1, spl2): | |||
| kernel = 0 | |||
| # Define the function to compute kernels between vertices in each condition. | |||
| if len(self._node_labels) > 0: | |||
| # node symb and non-synb labeled | |||
| if len(self._node_attrs) > 0: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['mix'] | |||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
| return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
| # node symb labeled | |||
| else: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['symb'] | |||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
| return kn(n1_labels, n2_labels) | |||
| else: | |||
| # node non-synb labeled | |||
| if len(self._node_attrs) > 0: | |||
| def compute_vk(n1, n2): | |||
| kn = self._node_kernels['nsymb'] | |||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
| return kn(n1_attrs, n2_attrs) | |||
| # # node unlabeled | |||
| # else: | |||
| # for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| # if e1[2]['cost'] == e2[2]['cost']: | |||
| # kernel += 1 | |||
| # return kernel | |||
| # Define the function to compute kernels between edges in each condition. | |||
| if len(self._edge_labels) > 0: | |||
| # edge symb and non-synb labeled | |||
| if len(self._edge_attrs) > 0: | |||
| def compute_ek(e1, e2): | |||
| ke = self._edge_kernels['mix'] | |||
| e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||
| e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||
| e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
| # edge symb labeled | |||
| else: | |||
| def compute_ek(e1, e2): | |||
| ke = self._edge_kernels['symb'] | |||
| e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||
| e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||
| return ke(e1_labels, e2_labels) | |||
| else: | |||
| # edge non-synb labeled | |||
| if len(self._edge_attrs) > 0: | |||
| def compute_ek(e1, e2): | |||
| ke = self._edge_kernels['nsymb'] | |||
| e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||
| return ke(e1_attrs, e2_attrs) | |||
| # compute graph kernels | |||
| if len(self._node_labels) > 0 or len(self._node_attrs) > 0: | |||
| if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||
| for p1, p2 in product(spl1, spl2): | |||
| if len(p1) == len(p2): | |||
| kpath = compute_vk(p1[0], p2[0]) | |||
| if kpath: | |||
| for idx in range(1, len(p1)): | |||
| kpath *= compute_vk(p1[idx], p2[idx]) * \ | |||
| compute_ek((p1[idx-1], p1[idx]), | |||
| (p2[idx-1], p2[idx])) | |||
| if not kpath: | |||
| break | |||
| kernel += kpath # add up kernels of all paths | |||
| else: | |||
| for p1, p2 in product(spl1, spl2): | |||
| if len(p1) == len(p2): | |||
| kpath = compute_vk(p1[0], p2[0]) | |||
| if kpath: | |||
| for idx in range(1, len(p1)): | |||
| kpath *= compute_vk(p1[idx], p2[idx]) | |||
| if not kpath: | |||
| break | |||
| kernel += kpath # add up kernels of all paths | |||
| else: | |||
| if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||
| for p1, p2 in product(spl1, spl2): | |||
| if len(p1) == len(p2): | |||
| if len(p1) == 0: | |||
| kernel += 1 | |||
| else: | |||
| kpath = 1 | |||
| for idx in range(0, len(p1) - 1): | |||
| kpath *= compute_ek((p1[idx], p1[idx+1]), | |||
| (p2[idx], p2[idx+1])) | |||
| if not kpath: | |||
| break | |||
| kernel += kpath # add up kernels of all paths | |||
| else: | |||
| for p1, p2 in product(spl1, spl2): | |||
| if len(p1) == len(p2): | |||
| kernel += 1 | |||
| try: | |||
| kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average | |||
| except ZeroDivisionError: | |||
| print(spl1, spl2) | |||
| print(g1.nodes(data=True)) | |||
| print(g1.edges(data=True)) | |||
| raise Exception | |||
| return kernel | |||
| def _wrapper_ssp_do_naive(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | |||
| def _get_all_node_kernels(self, g1, g2): | |||
| return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
| def _get_all_edge_kernels(self, g1, g2): | |||
| # compute kernels between all pairs of edges, which is an idea of | |||
| # extension of FCSP. It suits sparse graphs, which is the most case we | |||
| @@ -368,5 +494,5 @@ class StructuralSP(GraphKernel): | |||
| # edge unlabeled | |||
| else: | |||
| pass | |||
| return ek_dict | |||
| @@ -3,13 +3,14 @@ | |||
| import pytest | |||
| import multiprocessing | |||
| import numpy as np | |||
| def chooseDataset(ds_name): | |||
| """Choose dataset according to name. | |||
| """ | |||
| from gklearn.utils import Dataset | |||
| dataset = Dataset() | |||
| # no node labels (and no edge labels). | |||
| @@ -46,9 +47,9 @@ def chooseDataset(ds_name): | |||
| elif ds_name == 'Cuneiform': | |||
| dataset.load_predefined_dataset(ds_name) | |||
| dataset.trim_dataset(edge_required=True) | |||
| dataset.cut_graphs(range(0, 3)) | |||
| return dataset | |||
| @@ -57,7 +58,7 @@ def test_list_graph_kernels(): | |||
| """ | |||
| from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | |||
| assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @@ -68,10 +69,10 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||
| """ | |||
| from gklearn.kernels import CommonWalk | |||
| import networkx as nx | |||
| dataset = chooseDataset(ds_name) | |||
| dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||
| try: | |||
| graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| @@ -87,8 +88,8 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| @@ -96,9 +97,9 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||
| """Test marginalized kernel. | |||
| """ | |||
| from gklearn.kernels import Marginalized | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| @@ -115,15 +116,15 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SylvesterEquation(ds_name, parallel): | |||
| """Test sylvester equation kernel. | |||
| """ | |||
| from gklearn.kernels import SylvesterEquation | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| @@ -139,11 +140,11 @@ def test_SylvesterEquation(ds_name, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ConjugateGradient(ds_name, parallel): | |||
| @@ -152,9 +153,9 @@ def test_ConjugateGradient(ds_name, parallel): | |||
| from gklearn.kernels import ConjugateGradient | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| @@ -177,11 +178,11 @@ def test_ConjugateGradient(ds_name, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_FixedPoint(ds_name, parallel): | |||
| @@ -190,9 +191,9 @@ def test_FixedPoint(ds_name, parallel): | |||
| from gklearn.kernels import FixedPoint | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| @@ -215,11 +216,11 @@ def test_FixedPoint(ds_name, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| @@ -227,7 +228,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| """Test spectral decomposition kernel. | |||
| """ | |||
| from gklearn.kernels import SpectralDecomposition | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| @@ -244,11 +245,11 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| # @pytest.mark.parametrize( | |||
| # 'compute_method,ds_name,sub_kernel', | |||
| # [ | |||
| @@ -268,7 +269,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| # from gklearn.kernels import RandomWalk | |||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| # import functools | |||
| # | |||
| # | |||
| # dataset = chooseDataset(ds_name) | |||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| @@ -297,7 +298,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| # except Exception as exception: | |||
| # assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ShortestPath(ds_name, parallel): | |||
| @@ -306,23 +307,38 @@ def test_ShortestPath(ds_name, parallel): | |||
| from gklearn.kernels import ShortestPath | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=True, | |||
| node_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=False, | |||
| node_kernels=sub_kernels) | |||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @@ -336,26 +352,44 @@ def test_StructuralSP(ds_name, parallel): | |||
| from gklearn.kernels import StructuralSP | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=True, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=False, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @@ -369,9 +403,9 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
| """Test path kernel up to length $h$. | |||
| """ | |||
| from gklearn.kernels import PathUpToH | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| @@ -385,8 +419,8 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_Treelet(ds_name, parallel): | |||
| @@ -395,10 +429,10 @@ def test_Treelet(ds_name, parallel): | |||
| from gklearn.kernels import Treelet | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| try: | |||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| @@ -412,8 +446,8 @@ def test_Treelet(ds_name, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | |||
| # @pytest.mark.parametrize('base_kernel', ['subtree']) | |||
| @@ -422,7 +456,7 @@ def test_WLSubtree(ds_name, parallel): | |||
| """Test Weisfeiler-Lehman subtree kernel. | |||
| """ | |||
| from gklearn.kernels import WLSubtree | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| @@ -438,12 +472,13 @@ def test_WLSubtree(ds_name, parallel): | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| if __name__ == "__main__": | |||
| test_list_graph_kernels() | |||
| # test_spkernel('Alkane', 'imap_unordered') | |||
| # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | |||
| test_StructuralSP('Acyclic', 'imap_unordered') | |||
| # test_WLSubtree('Acyclic', 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||