| @@ -9,10 +9,11 @@ import numpy as np | |||||
| import networkx as nx | import networkx as nx | ||||
| import multiprocessing | import multiprocessing | ||||
| import time | import time | ||||
| from gklearn.utils import normalize_gram_matrix | |||||
| class GraphKernel(object): | class GraphKernel(object): | ||||
| def __init__(self): | def __init__(self): | ||||
| self._graphs = None | self._graphs = None | ||||
| self._parallel = '' | self._parallel = '' | ||||
| @@ -22,14 +23,14 @@ class GraphKernel(object): | |||||
| self._run_time = 0 | self._run_time = 0 | ||||
| self._gram_matrix = None | self._gram_matrix = None | ||||
| self._gram_matrix_unnorm = None | self._gram_matrix_unnorm = None | ||||
| def compute(self, *graphs, **kwargs): | def compute(self, *graphs, **kwargs): | ||||
| self._parallel = kwargs.get('parallel', 'imap_unordered') | self._parallel = kwargs.get('parallel', 'imap_unordered') | ||||
| self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | ||||
| self._normalize = kwargs.get('normalize', True) | self._normalize = kwargs.get('normalize', True) | ||||
| self._verbose = kwargs.get('verbose', 2) | self._verbose = kwargs.get('verbose', 2) | ||||
| if len(graphs) == 1: | if len(graphs) == 1: | ||||
| if not isinstance(graphs[0], list): | if not isinstance(graphs[0], list): | ||||
| raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
| @@ -40,9 +41,9 @@ class GraphKernel(object): | |||||
| self._gram_matrix = self._compute_gram_matrix() | self._gram_matrix = self._compute_gram_matrix() | ||||
| self._gram_matrix_unnorm = np.copy(self._gram_matrix) | self._gram_matrix_unnorm = np.copy(self._gram_matrix) | ||||
| if self._normalize: | if self._normalize: | ||||
| self._gram_matrix = self.normalize_gm(self._gram_matrix) | |||||
| self._gram_matrix = normalize_gram_matrix(self._gram_matrix) | |||||
| return self._gram_matrix, self._run_time | return self._gram_matrix, self._run_time | ||||
| elif len(graphs) == 2: | elif len(graphs) == 2: | ||||
| if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | ||||
| kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | ||||
| @@ -59,14 +60,14 @@ class GraphKernel(object): | |||||
| return kernel_list, self._run_time | return kernel_list, self._run_time | ||||
| else: | else: | ||||
| raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
| elif len(graphs) == 0 and self._graphs is None: | elif len(graphs) == 0 and self._graphs is None: | ||||
| raise Exception('Please add graphs before computing.') | raise Exception('Please add graphs before computing.') | ||||
| else: | else: | ||||
| raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
| def normalize_gm(self, gram_matrix): | def normalize_gm(self, gram_matrix): | ||||
| import warnings | import warnings | ||||
| warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | ||||
| @@ -77,8 +78,8 @@ class GraphKernel(object): | |||||
| gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | ||||
| gram_matrix[j][i] = gram_matrix[i][j] | gram_matrix[j][i] = gram_matrix[i][j] | ||||
| return gram_matrix | return gram_matrix | ||||
| def compute_distance_matrix(self): | def compute_distance_matrix(self): | ||||
| if self._gram_matrix is None: | if self._gram_matrix is None: | ||||
| raise Exception('Please compute the Gram matrix before computing distance matrix.') | raise Exception('Please compute the Gram matrix before computing distance matrix.') | ||||
| @@ -97,98 +98,98 @@ class GraphKernel(object): | |||||
| dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | ||||
| dis_mean = np.mean(np.mean(dis_mat)) | dis_mean = np.mean(np.mean(dis_mat)) | ||||
| return dis_mat, dis_max, dis_min, dis_mean | return dis_mat, dis_max, dis_min, dis_mean | ||||
| def _compute_gram_matrix(self): | def _compute_gram_matrix(self): | ||||
| start_time = time.time() | start_time = time.time() | ||||
| if self._parallel == 'imap_unordered': | if self._parallel == 'imap_unordered': | ||||
| gram_matrix = self._compute_gm_imap_unordered() | gram_matrix = self._compute_gm_imap_unordered() | ||||
| elif self._parallel is None: | elif self._parallel is None: | ||||
| gram_matrix = self._compute_gm_series() | gram_matrix = self._compute_gm_series() | ||||
| else: | else: | ||||
| raise Exception('Parallel mode is not set correctly.') | raise Exception('Parallel mode is not set correctly.') | ||||
| self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
| if self._verbose: | if self._verbose: | ||||
| print('Gram matrix of size %d built in %s seconds.' | print('Gram matrix of size %d built in %s seconds.' | ||||
| % (len(self._graphs), self._run_time)) | % (len(self._graphs), self._run_time)) | ||||
| return gram_matrix | return gram_matrix | ||||
| def _compute_gm_series(self): | def _compute_gm_series(self): | ||||
| pass | pass | ||||
| def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
| pass | pass | ||||
| def _compute_kernel_list(self, g1, g_list): | def _compute_kernel_list(self, g1, g_list): | ||||
| start_time = time.time() | start_time = time.time() | ||||
| if self._parallel == 'imap_unordered': | if self._parallel == 'imap_unordered': | ||||
| kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | ||||
| elif self._parallel is None: | elif self._parallel is None: | ||||
| kernel_list = self._compute_kernel_list_series(g1, g_list) | kernel_list = self._compute_kernel_list_series(g1, g_list) | ||||
| else: | else: | ||||
| raise Exception('Parallel mode is not set correctly.') | raise Exception('Parallel mode is not set correctly.') | ||||
| self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
| if self._verbose: | if self._verbose: | ||||
| print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | ||||
| % (len(g_list), self._run_time)) | % (len(g_list), self._run_time)) | ||||
| return kernel_list | return kernel_list | ||||
| def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
| pass | pass | ||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
| pass | pass | ||||
| def _compute_single_kernel(self, g1, g2): | def _compute_single_kernel(self, g1, g2): | ||||
| start_time = time.time() | start_time = time.time() | ||||
| kernel = self._compute_single_kernel_series(g1, g2) | kernel = self._compute_single_kernel_series(g1, g2) | ||||
| self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
| if self._verbose: | if self._verbose: | ||||
| print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | ||||
| return kernel | return kernel | ||||
| def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
| pass | pass | ||||
| def is_graph(self, graph): | def is_graph(self, graph): | ||||
| if isinstance(graph, nx.Graph): | if isinstance(graph, nx.Graph): | ||||
| return True | return True | ||||
| if isinstance(graph, nx.DiGraph): | if isinstance(graph, nx.DiGraph): | ||||
| return True | |||||
| return True | |||||
| if isinstance(graph, nx.MultiGraph): | if isinstance(graph, nx.MultiGraph): | ||||
| return True | |||||
| return True | |||||
| if isinstance(graph, nx.MultiDiGraph): | if isinstance(graph, nx.MultiDiGraph): | ||||
| return True | |||||
| return True | |||||
| return False | return False | ||||
| @property | @property | ||||
| def graphs(self): | def graphs(self): | ||||
| return self._graphs | return self._graphs | ||||
| @property | @property | ||||
| def parallel(self): | def parallel(self): | ||||
| return self._parallel | return self._parallel | ||||
| @property | @property | ||||
| def n_jobs(self): | def n_jobs(self): | ||||
| return self._n_jobs | return self._n_jobs | ||||
| @@ -197,30 +198,30 @@ class GraphKernel(object): | |||||
| @property | @property | ||||
| def verbose(self): | def verbose(self): | ||||
| return self._verbose | return self._verbose | ||||
| @property | @property | ||||
| def normalize(self): | def normalize(self): | ||||
| return self._normalize | return self._normalize | ||||
| @property | @property | ||||
| def run_time(self): | def run_time(self): | ||||
| return self._run_time | return self._run_time | ||||
| @property | @property | ||||
| def gram_matrix(self): | def gram_matrix(self): | ||||
| return self._gram_matrix | return self._gram_matrix | ||||
| @gram_matrix.setter | @gram_matrix.setter | ||||
| def gram_matrix(self, value): | def gram_matrix(self, value): | ||||
| self._gram_matrix = value | self._gram_matrix = value | ||||
| @property | @property | ||||
| def gram_matrix_unnorm(self): | def gram_matrix_unnorm(self): | ||||
| return self._gram_matrix_unnorm | |||||
| return self._gram_matrix_unnorm | |||||
| @gram_matrix_unnorm.setter | @gram_matrix_unnorm.setter | ||||
| def gram_matrix_unnorm(self, value): | def gram_matrix_unnorm(self, value): | ||||
| @@ -12,7 +12,7 @@ GRAPH_KERNELS = { | |||||
| 'common walk': '', | 'common walk': '', | ||||
| 'marginalized': '', | 'marginalized': '', | ||||
| 'sylvester equation': '', | 'sylvester equation': '', | ||||
| 'fixed_point': '', | |||||
| 'fixed point': '', | |||||
| 'conjugate gradient': '', | 'conjugate gradient': '', | ||||
| 'spectral decomposition': '', | 'spectral decomposition': '', | ||||
| ### based on paths. | ### based on paths. | ||||
| @@ -5,9 +5,9 @@ Created on Tue Apr 7 15:24:58 2020 | |||||
| @author: ljia | @author: ljia | ||||
| @references: | |||||
| [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
| @references: | |||||
| [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
| Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | ||||
| """ | """ | ||||
| @@ -23,13 +23,14 @@ from gklearn.kernels import GraphKernel | |||||
| class ShortestPath(GraphKernel): | class ShortestPath(GraphKernel): | ||||
| def __init__(self, **kwargs): | def __init__(self, **kwargs): | ||||
| GraphKernel.__init__(self) | GraphKernel.__init__(self) | ||||
| self._node_labels = kwargs.get('node_labels', []) | self._node_labels = kwargs.get('node_labels', []) | ||||
| self._node_attrs = kwargs.get('node_attrs', []) | self._node_attrs = kwargs.get('node_attrs', []) | ||||
| self._edge_weight = kwargs.get('edge_weight', None) | self._edge_weight = kwargs.get('edge_weight', None) | ||||
| self._node_kernels = kwargs.get('node_kernels', None) | self._node_kernels = kwargs.get('node_kernels', None) | ||||
| self._fcsp = kwargs.get('fcsp', True) | |||||
| self._ds_infos = kwargs.get('ds_infos', {}) | self._ds_infos = kwargs.get('ds_infos', {}) | ||||
| @@ -40,10 +41,10 @@ class ShortestPath(GraphKernel): | |||||
| else: | else: | ||||
| iterator = self._graphs | iterator = self._graphs | ||||
| self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
| from itertools import combinations_with_replacement | from itertools import combinations_with_replacement | ||||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | ||||
| if self._verbose >= 2: | if self._verbose >= 2: | ||||
| @@ -54,10 +55,10 @@ class ShortestPath(GraphKernel): | |||||
| kernel = self._sp_do(self._graphs[i], self._graphs[j]) | kernel = self._sp_do(self._graphs[i], self._graphs[j]) | ||||
| gram_matrix[i][j] = kernel | gram_matrix[i][j] = kernel | ||||
| gram_matrix[j][i] = kernel | gram_matrix[j][i] = kernel | ||||
| return gram_matrix | return gram_matrix | ||||
| def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
| # get shortest path graph of each graph. | # get shortest path graph of each graph. | ||||
| pool = Pool(self._n_jobs) | pool = Pool(self._n_jobs) | ||||
| @@ -76,20 +77,20 @@ class ShortestPath(GraphKernel): | |||||
| self._graphs[i] = g | self._graphs[i] = g | ||||
| pool.close() | pool.close() | ||||
| pool.join() | pool.join() | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
| def init_worker(gs_toshare): | def init_worker(gs_toshare): | ||||
| global G_gs | global G_gs | ||||
| G_gs = gs_toshare | G_gs = gs_toshare | ||||
| do_fun = self._wrapper_sp_do | do_fun = self._wrapper_sp_do | ||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | ||||
| return gram_matrix | return gram_matrix | ||||
| def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
| # get shortest path graphs of g1 and each graph in g_list. | # get shortest path graphs of g1 and each graph in g_list. | ||||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
| @@ -98,7 +99,7 @@ class ShortestPath(GraphKernel): | |||||
| else: | else: | ||||
| iterator = g_list | iterator = g_list | ||||
| g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | ||||
| # compute kernel list. | # compute kernel list. | ||||
| kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
| if self._verbose >= 2: | if self._verbose >= 2: | ||||
| @@ -108,10 +109,10 @@ class ShortestPath(GraphKernel): | |||||
| for i in iterator: | for i in iterator: | ||||
| kernel = self._sp_do(g1, g_list[i]) | kernel = self._sp_do(g1, g_list[i]) | ||||
| kernel_list[i] = kernel | kernel_list[i] = kernel | ||||
| return kernel_list | return kernel_list | ||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
| # get shortest path graphs of g1 and each graph in g_list. | # get shortest path graphs of g1 and each graph in g_list. | ||||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
| @@ -131,49 +132,57 @@ class ShortestPath(GraphKernel): | |||||
| g_list[i] = g | g_list[i] = g | ||||
| pool.close() | pool.close() | ||||
| pool.join() | pool.join() | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
| def init_worker(g1_toshare, gl_toshare): | def init_worker(g1_toshare, gl_toshare): | ||||
| global G_g1, G_gl | global G_g1, G_gl | ||||
| G_g1 = g1_toshare | |||||
| G_gl = gl_toshare | |||||
| G_g1 = g1_toshare | |||||
| G_gl = gl_toshare | |||||
| do_fun = self._wrapper_kernel_list_do | do_fun = self._wrapper_kernel_list_do | ||||
| def func_assign(result, var_to_assign): | |||||
| def func_assign(result, var_to_assign): | |||||
| var_to_assign[result[0]] = result[1] | var_to_assign[result[0]] = result[1] | ||||
| itr = range(len(g_list)) | itr = range(len(g_list)) | ||||
| len_itr = len(g_list) | len_itr = len(g_list) | ||||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | ||||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | ||||
| return kernel_list | return kernel_list | ||||
| def _wrapper_kernel_list_do(self, itr): | def _wrapper_kernel_list_do(self, itr): | ||||
| return itr, self._sp_do(G_g1, G_gl[itr]) | return itr, self._sp_do(G_g1, G_gl[itr]) | ||||
| def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
| g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
| g2 = getSPGraph(g2, edge_weight=self._edge_weight) | g2 = getSPGraph(g2, edge_weight=self._edge_weight) | ||||
| kernel = self._sp_do(g1, g2) | kernel = self._sp_do(g1, g2) | ||||
| return kernel | |||||
| return kernel | |||||
| def _wrapper_get_sp_graphs(self, itr_item): | def _wrapper_get_sp_graphs(self, itr_item): | ||||
| g = itr_item[0] | g = itr_item[0] | ||||
| i = itr_item[1] | i = itr_item[1] | ||||
| return i, getSPGraph(g, edge_weight=self._edge_weight) | return i, getSPGraph(g, edge_weight=self._edge_weight) | ||||
| def _sp_do(self, g1, g2): | def _sp_do(self, g1, g2): | ||||
| if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||||
| return self._sp_do_fcsp(g1, g2) | |||||
| else: | |||||
| return self._sp_do_naive(g1, g2) | |||||
| def _sp_do_fcsp(self, g1, g2): | |||||
| kernel = 0 | kernel = 0 | ||||
| # compute shortest path matrices first, method borrowed from FCSP. | # compute shortest path matrices first, method borrowed from FCSP. | ||||
| vk_dict = {} # shortest path matrices dict | vk_dict = {} # shortest path matrices dict | ||||
| if len(self._node_labels) > 0: | |||||
| if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do(). | |||||
| # node symb and non-synb labeled | # node symb and non-synb labeled | ||||
| if len(self._node_attrs) > 0: | if len(self._node_attrs) > 0: | ||||
| kn = self._node_kernels['mix'] | kn = self._node_kernels['mix'] | ||||
| @@ -208,7 +217,7 @@ class ShortestPath(GraphKernel): | |||||
| if e1[2]['cost'] == e2[2]['cost']: | if e1[2]['cost'] == e2[2]['cost']: | ||||
| kernel += 1 | kernel += 1 | ||||
| return kernel | return kernel | ||||
| # compute graph kernels | # compute graph kernels | ||||
| if self._ds_infos['directed']: | if self._ds_infos['directed']: | ||||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | ||||
| @@ -225,7 +234,7 @@ class ShortestPath(GraphKernel): | |||||
| kn1 = nk11 * nk22 | kn1 = nk11 * nk22 | ||||
| kn2 = nk12 * nk21 | kn2 = nk12 * nk21 | ||||
| kernel += kn1 + kn2 | kernel += kn1 + kn2 | ||||
| # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | ||||
| # # compute vertex kernels | # # compute vertex kernels | ||||
| # try: | # try: | ||||
| @@ -238,7 +247,7 @@ class ShortestPath(GraphKernel): | |||||
| # vk_mat[i1][i2] = kn( | # vk_mat[i1][i2] = kn( | ||||
| # n1[1][node_label], n2[1][node_label], | # n1[1][node_label], n2[1][node_label], | ||||
| # [n1[1]['attributes']], [n2[1]['attributes']]) | # [n1[1]['attributes']], [n2[1]['attributes']]) | ||||
| # range1 = range(0, len(edge_w_g[i])) | # range1 = range(0, len(edge_w_g[i])) | ||||
| # range2 = range(0, len(edge_w_g[j])) | # range2 = range(0, len(edge_w_g[j])) | ||||
| # for i1 in range1: | # for i1 in range1: | ||||
| @@ -254,10 +263,67 @@ class ShortestPath(GraphKernel): | |||||
| # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | ||||
| # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | ||||
| # kernel += kn1 + kn2 | # kernel += kn1 + kn2 | ||||
| return kernel | return kernel | ||||
| def _sp_do_naive(self, g1, g2): | |||||
| kernel = 0 | |||||
| # Define the function to compute kernels between vertices in each condition. | |||||
| if len(self._node_labels) > 0: | |||||
| # node symb and non-synb labeled | |||||
| if len(self._node_attrs) > 0: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['mix'] | |||||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
| return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||||
| # node symb labeled | |||||
| else: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['symb'] | |||||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
| return kn(n1_labels, n2_labels) | |||||
| else: | |||||
| # node non-synb labeled | |||||
| if len(self._node_attrs) > 0: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['nsymb'] | |||||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
| return kn(n1_attrs, n2_attrs) | |||||
| # node unlabeled | |||||
| else: | |||||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
| if e1[2]['cost'] == e2[2]['cost']: | |||||
| kernel += 1 | |||||
| return kernel | |||||
| # compute graph kernels | |||||
| if self._ds_infos['directed']: | |||||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
| if e1[2]['cost'] == e2[2]['cost']: | |||||
| nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1]) | |||||
| kn1 = nk11 * nk22 | |||||
| kernel += kn1 | |||||
| else: | |||||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
| if e1[2]['cost'] == e2[2]['cost']: | |||||
| # each edge walk is counted twice, starting from both its extreme nodes. | |||||
| nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk( | |||||
| e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1]) | |||||
| kn1 = nk11 * nk22 | |||||
| kn2 = nk12 * nk21 | |||||
| kernel += kn1 + kn2 | |||||
| return kernel | |||||
| def _wrapper_sp_do(self, itr): | def _wrapper_sp_do(self, itr): | ||||
| i = itr[0] | i = itr[0] | ||||
| j = itr[1] | j = itr[1] | ||||
| @@ -5,9 +5,9 @@ Created on Mon Mar 30 11:59:57 2020 | |||||
| @author: ljia | @author: ljia | ||||
| @references: | |||||
| @references: | |||||
| [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
| [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
| Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | ||||
| """ | """ | ||||
| import sys | import sys | ||||
| @@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||||
| class StructuralSP(GraphKernel): | class StructuralSP(GraphKernel): | ||||
| def __init__(self, **kwargs): | def __init__(self, **kwargs): | ||||
| GraphKernel.__init__(self) | GraphKernel.__init__(self) | ||||
| self._node_labels = kwargs.get('node_labels', []) | self._node_labels = kwargs.get('node_labels', []) | ||||
| @@ -34,6 +34,7 @@ class StructuralSP(GraphKernel): | |||||
| self._node_kernels = kwargs.get('node_kernels', None) | self._node_kernels = kwargs.get('node_kernels', None) | ||||
| self._edge_kernels = kwargs.get('edge_kernels', None) | self._edge_kernels = kwargs.get('edge_kernels', None) | ||||
| self._compute_method = kwargs.get('compute_method', 'naive') | self._compute_method = kwargs.get('compute_method', 'naive') | ||||
| self._fcsp = kwargs.get('fcsp', True) | |||||
| self._ds_infos = kwargs.get('ds_infos', {}) | self._ds_infos = kwargs.get('ds_infos', {}) | ||||
| @@ -50,10 +51,10 @@ class StructuralSP(GraphKernel): | |||||
| else: | else: | ||||
| for g in iterator: | for g in iterator: | ||||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
| from itertools import combinations_with_replacement | from itertools import combinations_with_replacement | ||||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | ||||
| if self._verbose >= 2: | if self._verbose >= 2: | ||||
| @@ -72,10 +73,10 @@ class StructuralSP(GraphKernel): | |||||
| # print("error here ") | # print("error here ") | ||||
| gram_matrix[i][j] = kernel | gram_matrix[i][j] = kernel | ||||
| gram_matrix[j][i] = kernel | gram_matrix[j][i] = kernel | ||||
| return gram_matrix | return gram_matrix | ||||
| def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
| # get shortest paths of each graph in the graphs. | # get shortest paths of each graph in the graphs. | ||||
| splist = [None] * len(self._graphs) | splist = [None] * len(self._graphs) | ||||
| @@ -87,9 +88,9 @@ class StructuralSP(GraphKernel): | |||||
| chunksize = 100 | chunksize = 100 | ||||
| # get shortest path graphs of self._graphs | # get shortest path graphs of self._graphs | ||||
| if self._compute_method == 'trie': | if self._compute_method == 'trie': | ||||
| get_sps_fun = self._wrapper_get_sps_trie | |||||
| get_sps_fun = self._wrapper_get_sps_trie | |||||
| else: | else: | ||||
| get_sps_fun = self._wrapper_get_sps_naive | |||||
| get_sps_fun = self._wrapper_get_sps_naive | |||||
| if self.verbose >= 2: | if self.verbose >= 2: | ||||
| iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | ||||
| desc='getting shortest paths', file=sys.stdout) | desc='getting shortest paths', file=sys.stdout) | ||||
| @@ -99,24 +100,24 @@ class StructuralSP(GraphKernel): | |||||
| splist[i] = sp | splist[i] = sp | ||||
| pool.close() | pool.close() | ||||
| pool.join() | pool.join() | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
| def init_worker(spl_toshare, gs_toshare): | def init_worker(spl_toshare, gs_toshare): | ||||
| global G_spl, G_gs | global G_spl, G_gs | ||||
| G_spl = spl_toshare | G_spl = spl_toshare | ||||
| G_gs = gs_toshare | |||||
| if self._compute_method == 'trie': | |||||
| G_gs = gs_toshare | |||||
| if self._compute_method == 'trie': | |||||
| do_fun = self._wrapper_ssp_do_trie | do_fun = self._wrapper_ssp_do_trie | ||||
| else: | |||||
| do_fun = self._wrapper_ssp_do_naive | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| else: | |||||
| do_fun = self._wrapper_ssp_do_naive | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | ||||
| return gram_matrix | return gram_matrix | ||||
| def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
| # get shortest paths of g1 and each graph in g_list. | # get shortest paths of g1 and each graph in g_list. | ||||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
| @@ -131,7 +132,7 @@ class StructuralSP(GraphKernel): | |||||
| else: | else: | ||||
| for g in iterator: | for g in iterator: | ||||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | ||||
| # compute kernel list. | # compute kernel list. | ||||
| kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
| if self._verbose >= 2: | if self._verbose >= 2: | ||||
| @@ -146,10 +147,10 @@ class StructuralSP(GraphKernel): | |||||
| for i in iterator: | for i in iterator: | ||||
| kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | ||||
| kernel_list[i] = kernel | kernel_list[i] = kernel | ||||
| return kernel_list | return kernel_list | ||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
| # get shortest paths of g1 and each graph in g_list. | # get shortest paths of g1 and each graph in g_list. | ||||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
| @@ -162,9 +163,9 @@ class StructuralSP(GraphKernel): | |||||
| chunksize = 100 | chunksize = 100 | ||||
| # get shortest path graphs of g_list | # get shortest path graphs of g_list | ||||
| if self._compute_method == 'trie': | if self._compute_method == 'trie': | ||||
| get_sps_fun = self._wrapper_get_sps_trie | |||||
| get_sps_fun = self._wrapper_get_sps_trie | |||||
| else: | else: | ||||
| get_sps_fun = self._wrapper_get_sps_naive | |||||
| get_sps_fun = self._wrapper_get_sps_naive | |||||
| if self.verbose >= 2: | if self.verbose >= 2: | ||||
| iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | ||||
| desc='getting shortest paths', file=sys.stdout) | desc='getting shortest paths', file=sys.stdout) | ||||
| @@ -174,7 +175,7 @@ class StructuralSP(GraphKernel): | |||||
| splist[i] = sp | splist[i] = sp | ||||
| pool.close() | pool.close() | ||||
| pool.join() | pool.join() | ||||
| # compute Gram matrix. | # compute Gram matrix. | ||||
| kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
| @@ -182,27 +183,27 @@ class StructuralSP(GraphKernel): | |||||
| global G_sp1, G_spl, G_g1, G_gl | global G_sp1, G_spl, G_g1, G_gl | ||||
| G_sp1 = sp1_toshare | G_sp1 = sp1_toshare | ||||
| G_spl = spl_toshare | G_spl = spl_toshare | ||||
| G_g1 = g1_toshare | |||||
| G_gl = gl_toshare | |||||
| if self._compute_method == 'trie': | |||||
| G_g1 = g1_toshare | |||||
| G_gl = gl_toshare | |||||
| if self._compute_method == 'trie': | |||||
| do_fun = self._wrapper_ssp_do_trie | do_fun = self._wrapper_ssp_do_trie | ||||
| else: | |||||
| else: | |||||
| do_fun = self._wrapper_kernel_list_do | do_fun = self._wrapper_kernel_list_do | ||||
| def func_assign(result, var_to_assign): | |||||
| def func_assign(result, var_to_assign): | |||||
| var_to_assign[result[0]] = result[1] | var_to_assign[result[0]] = result[1] | ||||
| itr = range(len(g_list)) | itr = range(len(g_list)) | ||||
| len_itr = len(g_list) | len_itr = len(g_list) | ||||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | ||||
| init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | ||||
| return kernel_list | return kernel_list | ||||
| def _wrapper_kernel_list_do(self, itr): | def _wrapper_kernel_list_do(self, itr): | ||||
| return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | ||||
| def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
| sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | ||||
| @@ -210,26 +211,33 @@ class StructuralSP(GraphKernel): | |||||
| kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | ||||
| else: | else: | ||||
| kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | ||||
| return kernel | |||||
| return kernel | |||||
| def _wrapper_get_sps_naive(self, itr_item): | def _wrapper_get_sps_naive(self, itr_item): | ||||
| g = itr_item[0] | g = itr_item[0] | ||||
| i = itr_item[1] | i = itr_item[1] | ||||
| return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | ||||
| def _ssp_do_naive(self, g1, g2, spl1, spl2): | def _ssp_do_naive(self, g1, g2, spl1, spl2): | ||||
| if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||||
| return self._sp_do_naive_fcsp(g1, g2, spl1, spl2) | |||||
| else: | |||||
| return self._sp_do_naive_naive(g1, g2, spl1, spl2) | |||||
| def _sp_do_naive_fcsp(self, g1, g2, spl1, spl2): | |||||
| kernel = 0 | kernel = 0 | ||||
| # First, compute shortest path matrices, method borrowed from FCSP. | # First, compute shortest path matrices, method borrowed from FCSP. | ||||
| vk_dict = self._get_all_node_kernels(g1, g2) | vk_dict = self._get_all_node_kernels(g1, g2) | ||||
| # Then, compute kernels between all pairs of edges, which is an idea of | # Then, compute kernels between all pairs of edges, which is an idea of | ||||
| # extension of FCSP. It suits sparse graphs, which is the most case we | # extension of FCSP. It suits sparse graphs, which is the most case we | ||||
| # went though. For dense graphs, this would be slow. | # went though. For dense graphs, this would be slow. | ||||
| ek_dict = self._get_all_edge_kernels(g1, g2) | ek_dict = self._get_all_edge_kernels(g1, g2) | ||||
| # compute graph kernels | # compute graph kernels | ||||
| if vk_dict: | if vk_dict: | ||||
| if ek_dict: | if ek_dict: | ||||
| @@ -279,7 +287,7 @@ class StructuralSP(GraphKernel): | |||||
| print(g1.nodes(data=True)) | print(g1.nodes(data=True)) | ||||
| print(g1.edges(data=True)) | print(g1.edges(data=True)) | ||||
| raise Exception | raise Exception | ||||
| # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | ||||
| # # compute vertex kernel matrix | # # compute vertex kernel matrix | ||||
| # try: | # try: | ||||
| @@ -292,7 +300,7 @@ class StructuralSP(GraphKernel): | |||||
| # vk_mat[i1][i2] = kn( | # vk_mat[i1][i2] = kn( | ||||
| # n1[1][node_label], n2[1][node_label], | # n1[1][node_label], n2[1][node_label], | ||||
| # [n1[1]['attributes']], [n2[1]['attributes']]) | # [n1[1]['attributes']], [n2[1]['attributes']]) | ||||
| # range1 = range(0, len(edge_w_g[i])) | # range1 = range(0, len(edge_w_g[i])) | ||||
| # range2 = range(0, len(edge_w_g[j])) | # range2 = range(0, len(edge_w_g[j])) | ||||
| # for i1 in range1: | # for i1 in range1: | ||||
| @@ -309,18 +317,136 @@ class StructuralSP(GraphKernel): | |||||
| # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | ||||
| # Kmatrix += kn1 + kn2 | # Kmatrix += kn1 + kn2 | ||||
| return kernel | return kernel | ||||
| def _sp_do_naive_naive(self, g1, g2, spl1, spl2): | |||||
| kernel = 0 | |||||
| # Define the function to compute kernels between vertices in each condition. | |||||
| if len(self._node_labels) > 0: | |||||
| # node symb and non-synb labeled | |||||
| if len(self._node_attrs) > 0: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['mix'] | |||||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
| return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||||
| # node symb labeled | |||||
| else: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['symb'] | |||||
| n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
| n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
| return kn(n1_labels, n2_labels) | |||||
| else: | |||||
| # node non-synb labeled | |||||
| if len(self._node_attrs) > 0: | |||||
| def compute_vk(n1, n2): | |||||
| kn = self._node_kernels['nsymb'] | |||||
| n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
| n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
| return kn(n1_attrs, n2_attrs) | |||||
| # # node unlabeled | |||||
| # else: | |||||
| # for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
| # if e1[2]['cost'] == e2[2]['cost']: | |||||
| # kernel += 1 | |||||
| # return kernel | |||||
| # Define the function to compute kernels between edges in each condition. | |||||
| if len(self._edge_labels) > 0: | |||||
| # edge symb and non-synb labeled | |||||
| if len(self._edge_attrs) > 0: | |||||
| def compute_ek(e1, e2): | |||||
| ke = self._edge_kernels['mix'] | |||||
| e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||||
| e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||||
| e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||||
| e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||||
| return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||||
| # edge symb labeled | |||||
| else: | |||||
| def compute_ek(e1, e2): | |||||
| ke = self._edge_kernels['symb'] | |||||
| e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||||
| e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||||
| return ke(e1_labels, e2_labels) | |||||
| else: | |||||
| # edge non-synb labeled | |||||
| if len(self._edge_attrs) > 0: | |||||
| def compute_ek(e1, e2): | |||||
| ke = self._edge_kernels['nsymb'] | |||||
| e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||||
| e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||||
| return ke(e1_attrs, e2_attrs) | |||||
| # compute graph kernels | |||||
| if len(self._node_labels) > 0 or len(self._node_attrs) > 0: | |||||
| if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||||
| for p1, p2 in product(spl1, spl2): | |||||
| if len(p1) == len(p2): | |||||
| kpath = compute_vk(p1[0], p2[0]) | |||||
| if kpath: | |||||
| for idx in range(1, len(p1)): | |||||
| kpath *= compute_vk(p1[idx], p2[idx]) * \ | |||||
| compute_ek((p1[idx-1], p1[idx]), | |||||
| (p2[idx-1], p2[idx])) | |||||
| if not kpath: | |||||
| break | |||||
| kernel += kpath # add up kernels of all paths | |||||
| else: | |||||
| for p1, p2 in product(spl1, spl2): | |||||
| if len(p1) == len(p2): | |||||
| kpath = compute_vk(p1[0], p2[0]) | |||||
| if kpath: | |||||
| for idx in range(1, len(p1)): | |||||
| kpath *= compute_vk(p1[idx], p2[idx]) | |||||
| if not kpath: | |||||
| break | |||||
| kernel += kpath # add up kernels of all paths | |||||
| else: | |||||
| if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||||
| for p1, p2 in product(spl1, spl2): | |||||
| if len(p1) == len(p2): | |||||
| if len(p1) == 0: | |||||
| kernel += 1 | |||||
| else: | |||||
| kpath = 1 | |||||
| for idx in range(0, len(p1) - 1): | |||||
| kpath *= compute_ek((p1[idx], p1[idx+1]), | |||||
| (p2[idx], p2[idx+1])) | |||||
| if not kpath: | |||||
| break | |||||
| kernel += kpath # add up kernels of all paths | |||||
| else: | |||||
| for p1, p2 in product(spl1, spl2): | |||||
| if len(p1) == len(p2): | |||||
| kernel += 1 | |||||
| try: | |||||
| kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average | |||||
| except ZeroDivisionError: | |||||
| print(spl1, spl2) | |||||
| print(g1.nodes(data=True)) | |||||
| print(g1.edges(data=True)) | |||||
| raise Exception | |||||
| return kernel | |||||
| def _wrapper_ssp_do_naive(self, itr): | def _wrapper_ssp_do_naive(self, itr): | ||||
| i = itr[0] | i = itr[0] | ||||
| j = itr[1] | j = itr[1] | ||||
| return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | ||||
| def _get_all_node_kernels(self, g1, g2): | def _get_all_node_kernels(self, g1, g2): | ||||
| return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | ||||
| def _get_all_edge_kernels(self, g1, g2): | def _get_all_edge_kernels(self, g1, g2): | ||||
| # compute kernels between all pairs of edges, which is an idea of | # compute kernels between all pairs of edges, which is an idea of | ||||
| # extension of FCSP. It suits sparse graphs, which is the most case we | # extension of FCSP. It suits sparse graphs, which is the most case we | ||||
| @@ -368,5 +494,5 @@ class StructuralSP(GraphKernel): | |||||
| # edge unlabeled | # edge unlabeled | ||||
| else: | else: | ||||
| pass | pass | ||||
| return ek_dict | return ek_dict | ||||
| @@ -3,13 +3,14 @@ | |||||
| import pytest | import pytest | ||||
| import multiprocessing | import multiprocessing | ||||
| import numpy as np | |||||
| def chooseDataset(ds_name): | def chooseDataset(ds_name): | ||||
| """Choose dataset according to name. | """Choose dataset according to name. | ||||
| """ | """ | ||||
| from gklearn.utils import Dataset | from gklearn.utils import Dataset | ||||
| dataset = Dataset() | dataset = Dataset() | ||||
| # no node labels (and no edge labels). | # no node labels (and no edge labels). | ||||
| @@ -46,9 +47,9 @@ def chooseDataset(ds_name): | |||||
| elif ds_name == 'Cuneiform': | elif ds_name == 'Cuneiform': | ||||
| dataset.load_predefined_dataset(ds_name) | dataset.load_predefined_dataset(ds_name) | ||||
| dataset.trim_dataset(edge_required=True) | dataset.trim_dataset(edge_required=True) | ||||
| dataset.cut_graphs(range(0, 3)) | dataset.cut_graphs(range(0, 3)) | ||||
| return dataset | return dataset | ||||
| @@ -57,7 +58,7 @@ def test_list_graph_kernels(): | |||||
| """ | """ | ||||
| from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | ||||
| assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | ||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
| @@ -68,10 +69,10 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
| """ | """ | ||||
| from gklearn.kernels import CommonWalk | from gklearn.kernels import CommonWalk | ||||
| import networkx as nx | import networkx as nx | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | ||||
| try: | try: | ||||
| graph_kernel = CommonWalk(node_labels=dataset.node_labels, | graph_kernel = CommonWalk(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
| @@ -87,8 +88,8 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
| @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| @@ -96,9 +97,9 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||||
| """Test marginalized kernel. | """Test marginalized kernel. | ||||
| """ | """ | ||||
| from gklearn.kernels import Marginalized | from gklearn.kernels import Marginalized | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| try: | try: | ||||
| graph_kernel = Marginalized(node_labels=dataset.node_labels, | graph_kernel = Marginalized(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
| @@ -115,15 +116,15 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_SylvesterEquation(ds_name, parallel): | def test_SylvesterEquation(ds_name, parallel): | ||||
| """Test sylvester equation kernel. | """Test sylvester equation kernel. | ||||
| """ | """ | ||||
| from gklearn.kernels import SylvesterEquation | from gklearn.kernels import SylvesterEquation | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| try: | try: | ||||
| @@ -139,11 +140,11 @@ def test_SylvesterEquation(ds_name, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_ConjugateGradient(ds_name, parallel): | def test_ConjugateGradient(ds_name, parallel): | ||||
| @@ -152,9 +153,9 @@ def test_ConjugateGradient(ds_name, parallel): | |||||
| from gklearn.kernels import ConjugateGradient | from gklearn.kernels import ConjugateGradient | ||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
| import functools | import functools | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
| @@ -177,11 +178,11 @@ def test_ConjugateGradient(ds_name, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_FixedPoint(ds_name, parallel): | def test_FixedPoint(ds_name, parallel): | ||||
| @@ -190,9 +191,9 @@ def test_FixedPoint(ds_name, parallel): | |||||
| from gklearn.kernels import FixedPoint | from gklearn.kernels import FixedPoint | ||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
| import functools | import functools | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
| @@ -215,11 +216,11 @@ def test_FixedPoint(ds_name, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
| @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| @@ -227,7 +228,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
| """Test spectral decomposition kernel. | """Test spectral decomposition kernel. | ||||
| """ | """ | ||||
| from gklearn.kernels import SpectralDecomposition | from gklearn.kernels import SpectralDecomposition | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| try: | try: | ||||
| @@ -244,11 +245,11 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| # @pytest.mark.parametrize( | # @pytest.mark.parametrize( | ||||
| # 'compute_method,ds_name,sub_kernel', | # 'compute_method,ds_name,sub_kernel', | ||||
| # [ | # [ | ||||
| @@ -268,7 +269,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
| # from gklearn.kernels import RandomWalk | # from gklearn.kernels import RandomWalk | ||||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
| # import functools | # import functools | ||||
| # | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | # dataset = chooseDataset(ds_name) | ||||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
| @@ -297,7 +298,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
| # except Exception as exception: | # except Exception as exception: | ||||
| # assert False, exception | # assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_ShortestPath(ds_name, parallel): | def test_ShortestPath(ds_name, parallel): | ||||
| @@ -306,23 +307,38 @@ def test_ShortestPath(ds_name, parallel): | |||||
| from gklearn.kernels import ShortestPath | from gklearn.kernels import ShortestPath | ||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
| import functools | import functools | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
| try: | try: | ||||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | graph_kernel = ShortestPath(node_labels=dataset.node_labels, | ||||
| node_attrs=dataset.node_attrs, | node_attrs=dataset.node_attrs, | ||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | ds_infos=dataset.get_dataset_infos(keys=['directed']), | ||||
| fcsp=True, | |||||
| node_kernels=sub_kernels) | node_kernels=sub_kernels) | ||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| fcsp=False, | |||||
| node_kernels=sub_kernels) | |||||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @@ -336,26 +352,44 @@ def test_StructuralSP(ds_name, parallel): | |||||
| from gklearn.kernels import StructuralSP | from gklearn.kernels import StructuralSP | ||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
| import functools | import functools | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
| try: | try: | ||||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | graph_kernel = StructuralSP(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, | node_attrs=dataset.node_attrs, | ||||
| edge_attrs=dataset.edge_attrs, | edge_attrs=dataset.edge_attrs, | ||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | ds_infos=dataset.get_dataset_infos(keys=['directed']), | ||||
| fcsp=True, | |||||
| node_kernels=sub_kernels, | node_kernels=sub_kernels, | ||||
| edge_kernels=sub_kernels) | edge_kernels=sub_kernels) | ||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| edge_attrs=dataset.edge_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| fcsp=False, | |||||
| node_kernels=sub_kernels, | |||||
| edge_kernels=sub_kernels) | |||||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @@ -369,9 +403,9 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
| """Test path kernel up to length $h$. | """Test path kernel up to length $h$. | ||||
| """ | """ | ||||
| from gklearn.kernels import PathUpToH | from gklearn.kernels import PathUpToH | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| try: | try: | ||||
| graph_kernel = PathUpToH(node_labels=dataset.node_labels, | graph_kernel = PathUpToH(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
| @@ -385,8 +419,8 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_Treelet(ds_name, parallel): | def test_Treelet(ds_name, parallel): | ||||
| @@ -395,10 +429,10 @@ def test_Treelet(ds_name, parallel): | |||||
| from gklearn.kernels import Treelet | from gklearn.kernels import Treelet | ||||
| from gklearn.utils.kernels import polynomialkernel | from gklearn.utils.kernels import polynomialkernel | ||||
| import functools | import functools | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
| try: | try: | ||||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | graph_kernel = Treelet(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
| @@ -412,8 +446,8 @@ def test_Treelet(ds_name, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
| #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | ||||
| # @pytest.mark.parametrize('base_kernel', ['subtree']) | # @pytest.mark.parametrize('base_kernel', ['subtree']) | ||||
| @@ -422,7 +456,7 @@ def test_WLSubtree(ds_name, parallel): | |||||
| """Test Weisfeiler-Lehman subtree kernel. | """Test Weisfeiler-Lehman subtree kernel. | ||||
| """ | """ | ||||
| from gklearn.kernels import WLSubtree | from gklearn.kernels import WLSubtree | ||||
| dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
| try: | try: | ||||
| @@ -438,12 +472,13 @@ def test_WLSubtree(ds_name, parallel): | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| test_list_graph_kernels() | test_list_graph_kernels() | ||||
| # test_spkernel('Alkane', 'imap_unordered') | # test_spkernel('Alkane', 'imap_unordered') | ||||
| # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | ||||
| test_StructuralSP('Acyclic', 'imap_unordered') | |||||
| # test_WLSubtree('Acyclic', 'imap_unordered') | # test_WLSubtree('Acyclic', 'imap_unordered') | ||||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | ||||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | ||||