Browse Source

optimize

master
scruel 7 years ago
parent
commit
4384f75be6
2 changed files with 5 additions and 3 deletions
  1. +3
    -3
      week2.md
  2. +2
    -0
      week3.md

+ 3
- 3
week2.md View File

@@ -89,7 +89,7 @@ $$
- 不易选取阈值
- 损失函数近乎直线时无法确定收敛情况

对于梯度下降,一般采用多次迭代收敛法来得出最小化损失函数的参数值,自动化测试收敛法(如设定 $J\left(\theta\right) < {10}^{-3}$ 为阈值)则几乎不会被使用。
对于梯度下降,一般采用多次迭代收敛法来得出最小化损失函数的参数值,自动化测试收敛法(如设定 $J\left(\theta\right) < {10}^{-3}$ 时判定收敛)则几乎不会被使用。

我们可以通过绘制**损失函数关于迭代次数的图像**,可视化梯度下降的执行过程,借助直观的图形来发现损失函数趋向于多少时能趋于收敛,依据图像变化情况,确定诸如学习速率的取值,迭代次数的大小等问题。

@@ -115,13 +115,13 @@ $$

![](image/20180108_113132.png)

在使用多项式回归时,要记住非常有必要进行特征缩放,比如 $x_1$ 的范围为 1-1000,那么 $x_1^2$ 的范围则为 1- 1000000。
在使用多项式回归时,要记住非常有必要进行特征缩放,比如 $x_1$ 的范围为 1-1000,那么 $x_1^2$ 的范围则为 1- 1000000,不适用特征缩放的话,范围更有不一致,也更易影响效率

## 4.6 正规方程(Normal Equation)

对于一些线性回归问题来说,正规方程法给出了一个更好的解决问题的方式。

正规方程法,即令 $\frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0$ ,通过解析函数的方式直接计算得出参数向量的值 $\theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y$ ,Octave 中为 `theta = inv(X'*X)*X'*y`。
正规方程法,即令 $\frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0$ ,通过解析函数的方式直接计算得出参数向量的值 $\theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y$ ,Octave 中代码为 `theta = inv(X'*X)*X'*y`。

> ${X}^{-1}$: 矩阵 $X$ 的逆,在 Octave 中,`inv` 函数用于计算矩阵的逆,类似的还有 `pinv` 函数。



+ 2
- 0
week3.md View File

@@ -110,6 +110,8 @@ ${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2

## 6.4 代价函数(Cost Function)

上节又留下了个问题,我们怎么知道决策边界是啥样?$\theta$ 多少时能很好的拟合数据?当然,见招拆招,总要来个 $J(\theta)$。



## 6.5 Simplified Cost Function and Gradient Descent


Loading…
Cancel
Save