|
1234567891011121314151617181920212223242526272829303132 |
- function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
- %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
- %regression with multiple variables
- % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
- % cost of using theta as the parameter for linear regression to fit the
- % data points in X and y. Returns the cost in J and the gradient in grad
-
- % Initialize some useful values
- m = length(y); % number of training examples
-
- % You need to return the following variables correctly
- J = 0;
- grad = zeros(size(theta));
-
- % ====================== YOUR CODE HERE ======================
- % Instructions: Compute the cost and gradient of regularized linear
- % regression for a particular choice of theta.
- %
- % You should set J to the cost and grad to the gradient.
- %
- hx = X * theta;
- J = 1 / (2 * m) * sum((hx - y) .^ 2) + lambda / (2 * m) * theta(2:end)' * theta(2:end);
-
- grad(1) = 1 / m * X(:,1)' * (hx - y);
- grad(2:end) = 1 / m * X(:, 2 : end)' * (hx - y) + lambda / m * theta(2:end);
-
-
- % =========================================================================
-
- grad = grad(:);
-
- end
|