function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % hx = X * theta; J = 1 / (2 * m) * sum((hx - y) .^ 2) + lambda / (2 * m) * theta(2:end)' * theta(2:end); grad(1) = 1 / m * X(:,1)' * (hx - y); grad(2:end) = 1 / m * X(:, 2 : end)' * (hx - y) + lambda / m * theta(2:end); % ========================================================================= grad = grad(:); end