You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_arith.cpp 64 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824
  1. /**
  2. * \file src/opr/impl/basic_arith.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/basic_arith.h"
  12. #include "megbrain/opr/basic_arith_wrapper.h"
  13. #include "megbrain/opr/utility.h"
  14. #include "megbrain/opr/io.h"
  15. #include "megbrain/opr/cond.h"
  16. #include "megbrain/opr/tensor_manip.h"
  17. #include "megbrain/gopt/basic_arith.h"
  18. #include "megbrain/gopt/gtrans.h"
  19. #include "megbrain/utils/arith_helper.h"
  20. #include "megbrain/graph/grad_impl.h"
  21. #include "./internal/megdnn_opr_wrapper.inl"
  22. #include <cmath>
  23. using namespace mgb;
  24. using namespace opr;
  25. namespace {
  26. //! global operator instance for static inference
  27. template<class Opr>
  28. class StaticInferOpr {
  29. intl::UniqPtrWithCN<Opr> m_opr;
  30. std::mutex m_mtx;
  31. public:
  32. class Lock {
  33. friend class StaticInferOpr;
  34. StaticInferOpr *m_owner;
  35. explicit Lock(StaticInferOpr *owner):
  36. m_owner{owner}
  37. {
  38. m_owner->m_mtx.lock();
  39. }
  40. public:
  41. Lock(Lock &&rhs):
  42. m_owner{rhs.m_owner}
  43. {
  44. rhs.m_owner = nullptr;
  45. }
  46. ~Lock() {
  47. if (m_owner)
  48. m_owner->m_mtx.unlock();
  49. }
  50. Lock& operator = (const Lock &) = delete;
  51. Lock& operator = (Lock&&) = delete;
  52. intl::UniqPtrWithCN<Opr>& operator() () {
  53. return m_owner->m_opr;
  54. }
  55. };
  56. //! lock and acquire the operator
  57. Lock lock() {
  58. Lock ret{this};
  59. if (!m_opr) {
  60. m_opr = intl::create_megdnn_opr<Opr>(
  61. CompNode::default_cpu());
  62. }
  63. return ret;
  64. }
  65. };
  66. } // anonymous namespace
  67. /* ========================= BatchedDTypePromotion ========================= */
  68. intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
  69. : m_orig_vars{vars} {
  70. mgb_assert(!vars.empty());
  71. DType final_dtype;
  72. bool changed = false;
  73. for (size_t i = 0; i < vars.size(); ++i) {
  74. auto cur = vars[i]->dtype();
  75. if (!i) {
  76. final_dtype = cur;
  77. } else {
  78. auto promoted = dtype_promotion(final_dtype, cur);
  79. changed |= promoted != final_dtype || promoted != cur;
  80. final_dtype = promoted;
  81. }
  82. }
  83. m_changed = changed;
  84. m_final_dtype = final_dtype;
  85. }
  86. void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
  87. mgb_assert(!m_finalized);
  88. if (m_final_dtype != dtype) {
  89. m_final_dtype = dtype;
  90. m_changed = true;
  91. }
  92. }
  93. const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
  94. m_finalized = true;
  95. if (!m_changed) {
  96. return m_orig_vars;
  97. }
  98. if (!m_cvt_vars_view.valid()) {
  99. m_cvt_vars.resize(m_orig_vars.size());
  100. auto dtype = m_final_dtype;
  101. for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
  102. m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
  103. }
  104. m_cvt_vars_view.emplace(m_cvt_vars);
  105. }
  106. return m_cvt_vars_view.val();
  107. }
  108. /* =========================== Elemwise =========================== */
  109. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
  110. Elemwise::Elemwise(
  111. const ModeTrait &mode_trait,
  112. const VarNodeArrayView &inputs, Param param,
  113. const OperatorNodeConfig &config):
  114. Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs}
  115. {
  116. init_megdnn_opr(*this, param);
  117. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  118. if (mode_trait.commutable) {
  119. mgb_assert(inputs.size() == 2);
  120. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  121. } else {
  122. if (param.mode == Mode::FUSE_MUL_ADD3) {
  123. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  124. add_input({inputs[2]});
  125. } else if (param.mode == Mode::FUSE_MUL_ADD4) {
  126. auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
  127. if (i0->id() > i1->id())
  128. std::swap(i0, i1);
  129. if (i2->id() > i3->id())
  130. std::swap(i2, i3);
  131. if (i0->id() > i2->id()) {
  132. std::swap(i0, i2);
  133. std::swap(i1, i3);
  134. }
  135. add_input({i0, i1, i2, i3});
  136. } else {
  137. for (auto i: inputs)
  138. add_input({i});
  139. }
  140. }
  141. mgb_assert(m_input_broadcastable.size() >= inputs.size());
  142. for (size_t i = 0; i < inputs.size(); ++ i) {
  143. if (input()[i]->owner_opr()->same_type<
  144. opr::MarkNoBroadcastElemwise>()) {
  145. m_input_broadcastable[i] = false;
  146. } else {
  147. m_input_broadcastable[i] = true;
  148. }
  149. }
  150. if (inputs.size() == 1) {
  151. m_input_broadcastable[0] = false;
  152. } else {
  153. Maybe<size_t> non_scalar;
  154. using namespace cg::static_infer;
  155. auto &&mgr = owner_graph()->static_infer_manager();
  156. for (size_t i = 0; i < input().size(); ++ i) {
  157. auto it = mgr.get_infer_type(input(i));
  158. if (!((it.shape & InferType::CONST) &&
  159. mgr.infer_shape(input(i)).is_scalar())) {
  160. if (non_scalar.valid()) {
  161. non_scalar.invalidate();
  162. break;
  163. }
  164. non_scalar = i;
  165. }
  166. }
  167. if (non_scalar.valid()) {
  168. // exactly one input is non-scalar
  169. m_input_broadcastable[non_scalar.val()] = false;
  170. }
  171. }
  172. if (inputs.size() &&
  173. inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
  174. mgb_assert(param.mode == Param::Mode::ADD ||
  175. param.mode == Param::Mode::SUB ||
  176. param.mode == Param::Mode::NEGATE ||
  177. param.mode == Param::Mode::RELU ||
  178. param.mode == Param::Mode::MAX ||
  179. param.mode == Param::Mode::MIN,
  180. "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
  181. "to be supported on Elemwise for quantized DType, no support %d", (int)param.mode);
  182. }
  183. }
  184. SymbolVar Elemwise::make(const VarNodeArrayView& inputs, Param param,
  185. const OperatorNodeConfig& config) {
  186. auto trait = ModeTrait::from_mode(param.mode);
  187. mgb_assert(inputs.size() == trait.arity,
  188. "%s expects %u inputs; got %zu actually", trait.name,
  189. trait.arity, inputs.size());
  190. intl::BatchedDTypePromotion dtp{inputs};
  191. if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
  192. dtp.set_dtype(dtype::Float32());
  193. }
  194. mgb_throw_if(dtp.get_dtype().category() == DTypeCategory::FLOAT &&
  195. !trait.allow_float,
  196. ConversionError,
  197. "elemwise mode %s does not allow float input; "
  198. "got inputs: %s",
  199. trait.name, cg::dump_var_info(inputs).c_str());
  200. #if !MGB_BUILD_SLIM_SERVING
  201. auto&& options = inputs[0]->owner_graph()->options();
  202. if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
  203. auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param,
  204. config);
  205. if (repl)
  206. return repl;
  207. }
  208. #endif
  209. return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
  210. trait, dtp.get_vars(), param, config);
  211. }
  212. TensorShape Elemwise::get_output_var_shape(
  213. Mode mode, const TensorShapeArray &input_shapes) {
  214. mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
  215. TensorShape ret;
  216. megdnn::Elemwise::deduce_shape(input_shapes, ret);
  217. return ret;
  218. }
  219. void Elemwise::perform(
  220. Mode mode, DeviceTensorND &dest,
  221. const SmallVector<DeviceTensorND> &inputs,
  222. intl::UniqPtrWithCN<megdnn::Elemwise> &opr) {
  223. megdnn::TensorNDArray dnn_inputs(inputs.size());
  224. TensorShapeArray inp_shapes(inputs.size());
  225. DType out_dt;
  226. CompNode out_cn;
  227. for (size_t i = 0; i < inputs.size(); ++ i) {
  228. auto &&t = inputs[i];
  229. if (!i) {
  230. out_cn = t.comp_node();
  231. out_dt = t.dtype();
  232. } else {
  233. mgb_assert(t.comp_node() == out_cn);
  234. mgb_assert(t.dtype() == out_dt);
  235. }
  236. if (t.shape().is_empty()) {
  237. mgb_assert(dest.empty());
  238. return;
  239. }
  240. inp_shapes[i] = t.shape();
  241. }
  242. if (!opr) {
  243. opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
  244. } else {
  245. mgb_assert(out_cn == opr.comp_node());
  246. }
  247. out_cn.activate();
  248. for (size_t i = 0; i < inputs.size(); ++ i)
  249. dnn_inputs[i] = inputs[i].as_megdnn();
  250. dest.comp_node(out_cn).dtype(out_dt).resize(
  251. get_output_var_shape(mode, inp_shapes));
  252. opr->param() = {mode};
  253. call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(),
  254. nullptr);
  255. }
  256. TensorLayoutArray Elemwise::collective_collapse(
  257. const TensorLayoutArray& layouts) {
  258. TensorLayoutPtrArray inp(layouts.size());
  259. TensorLayoutArray result(inp.size());
  260. for (size_t i = 0; i < layouts.size(); ++ i) {
  261. result[i] = layouts[i];
  262. inp[i] = &result[i];
  263. }
  264. collective_collapse_inplace(inp);
  265. return result;
  266. }
  267. void Elemwise::collective_collapse_inplace(
  268. const TensorLayoutPtrArray& layouts) {
  269. mgb_assert(layouts.size());
  270. size_t ndim = layouts[0]->ndim;
  271. for (auto i: layouts) {
  272. if (i->ndim != ndim)
  273. mgb_throw(MegBrainError, "ndims must be same");
  274. }
  275. auto update_all = [&layouts](size_t axis) {
  276. for (auto i: layouts) {
  277. i->shape[axis] *= i->shape[axis + 1];
  278. i->stride[axis] = i->stride[axis + 1];
  279. i->remove_axis_inplace(axis + 1);
  280. }
  281. };
  282. auto check = [&layouts](size_t axis) -> bool {
  283. auto std_p = std::make_pair(
  284. layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
  285. for (auto i: layouts) {
  286. auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
  287. if (std_p != cur_p) return false;
  288. if (i->stride[axis] != i->stride[axis + 1] *
  289. static_cast<ptrdiff_t>(i->shape[axis+1]) )
  290. return false;
  291. }
  292. return true;
  293. };
  294. for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
  295. if (check(i)) {
  296. update_all(i);
  297. }
  298. }
  299. }
  300. void Elemwise::broadcast_collective_collapse(
  301. const TensorLayoutPtrArray &inp_layouts, TensorLayout *target_layout) {
  302. for (auto &&p: inp_layouts) {
  303. *p = p->broadcast(*target_layout);
  304. }
  305. TensorLayoutPtrArray buf(inp_layouts.size() + 1);
  306. buf[0] = target_layout;
  307. for (size_t i = 0; i < inp_layouts.size(); i++) {
  308. buf[i+1] = inp_layouts[i];
  309. }
  310. collective_collapse_inplace(buf);
  311. }
  312. void Elemwise::mem_plan_fwd_in2out_writable() {
  313. mixin_mem_plan_fwd_in2out_writable(*this);
  314. }
  315. void Elemwise::scn_do_execute() {
  316. auto&& inp = input();
  317. megdnn::TensorNDArray dnn_inp;
  318. mgb_assert(dnn_inp.capacity() >= inp.size(),
  319. "heap allocation in elemwise exec");
  320. dnn_inp.resize(inp.size());
  321. for (size_t i = 0; i < inp.size(); ++i) {
  322. if (inp[i]->dev_tensor().empty()) {
  323. mgb_assert(output(0)->dev_tensor().empty());
  324. return;
  325. }
  326. dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
  327. }
  328. mgb_assert(!output(0)->dev_tensor().empty());
  329. megdnn_opr()->param() = param();
  330. call_megdnn_opr_exec(comp_node(), dnn_inp,
  331. output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
  332. this);
  333. }
  334. void Elemwise::init_output_static_infer_desc() {
  335. Super::init_output_static_infer_desc();
  336. static StaticInferOpr<megdnn::Elemwise> static_infer_opr;
  337. using namespace cg::static_infer;
  338. auto infer_value = [this](DeviceTensorND &dest, const InpVal &inp) {
  339. SmallVector<DeviceTensorND> inp_vals(inp.val.size());
  340. for (size_t i = 0; i < inp_vals.size(); ++ i)
  341. inp_vals[i] = inp.val[i].value();
  342. auto sopr = static_infer_opr.lock();
  343. perform(param().mode, dest, inp_vals, sopr());
  344. return true;
  345. };
  346. DepVal deps(input().size());
  347. for (size_t i = 0; i < input().size(); ++ i)
  348. deps[i] = {input(i), DepType::VALUE};
  349. owner_graph()->static_infer_manager().register_value_infer(
  350. output(0), {SourceType::DEP, deps, infer_value});
  351. }
  352. void Elemwise::get_output_var_shape(
  353. const TensorShapeArray &inp_shape, TensorShapeArray &out_shape) const {
  354. out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
  355. for (size_t i = 0; i < input().size(); ++ i) {
  356. mgb_throw_if(!m_input_broadcastable[i] &&
  357. !out_shape[0].eq_shape(inp_shape[i]), GraphError,
  358. "input %zu declared to be non-broadcastable but broacast "
  359. "actually happened", i);
  360. }
  361. }
  362. void Elemwise::add_input_layout_constraint() {
  363. for (auto i: input()) {
  364. i->add_layout_constraint_monotone();
  365. }
  366. }
  367. void Elemwise::call_megdnn_opr_exec(
  368. CompNode comp_node,
  369. megdnn::TensorNDArray &inp, const megdnn::TensorND &out,
  370. megdnn::Elemwise *opr, Elemwise *caller) {
  371. if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
  372. !(inp[2].layout.eq_layout(inp[0].layout) ||
  373. inp[2].layout.eq_layout(inp[1].layout) ||
  374. inp[2].layout.is_scalar())) {
  375. if (caller && !caller->fuse_badlayout_warn_printed()) {
  376. mgb_log_debug("%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
  377. "fallback to normal computing",
  378. caller->cname(),
  379. inp[0].layout.to_string().c_str(),
  380. inp[1].layout.to_string().c_str(),
  381. inp[2].layout.to_string().c_str()
  382. );
  383. caller->m_fuse_badlayout_warn_printed = true;
  384. }
  385. for (auto &&i: inp) {
  386. i.layout = i.layout.broadcast(out.layout);
  387. }
  388. megdnn::TensorNDArray run_inp(2);
  389. auto run = [&](Mode mode,
  390. const megdnn::TensorND &i0, const megdnn::TensorND &i1,
  391. const megdnn::TensorND &out) {
  392. run_inp[0] = i0;
  393. run_inp[1] = i1;
  394. opr->param() = {mode};
  395. opr->exec(run_inp, out);
  396. };
  397. auto tmp =
  398. intl::get_temp_tensor(caller ? caller->owner_graph() : nullptr,
  399. comp_node, out.layout);
  400. auto tmpv = tmp.as_megdnn();
  401. MGB_TRY {
  402. run(Mode::MUL, inp[0], inp[1], tmpv);
  403. run(Mode::ADD, inp[2], tmpv, out);
  404. } MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
  405. return;
  406. }
  407. if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
  408. !(inp[0].layout.eq_layout(inp[2].layout) &&
  409. inp[1].layout.eq_layout(inp[3].layout)) &&
  410. !(inp[0].layout.eq_layout(inp[3].layout) &&
  411. inp[1].layout.eq_layout(inp[2].layout))) {
  412. if (caller && !caller->fuse_badlayout_warn_printed()) {
  413. mgb_log_debug(
  414. "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
  415. "fallback to normal computing",
  416. caller->cname(),
  417. inp[0].layout.to_string().c_str(),
  418. inp[1].layout.to_string().c_str(),
  419. inp[2].layout.to_string().c_str(),
  420. inp[3].layout.to_string().c_str()
  421. );
  422. caller->m_fuse_badlayout_warn_printed = true;
  423. }
  424. for (auto &&i: inp) {
  425. i.layout = i.layout.broadcast(out.layout);
  426. }
  427. megdnn::TensorNDArray run_inp(2);
  428. auto run = [&](Mode mode,
  429. const megdnn::TensorND &i0, const megdnn::TensorND &i1,
  430. const megdnn::TensorND &out) {
  431. run_inp[0] = i0;
  432. run_inp[1] = i1;
  433. opr->param() = {mode};
  434. opr->exec(run_inp, out);
  435. };
  436. auto tmp =
  437. intl::get_temp_tensor(caller ? caller->owner_graph() : nullptr,
  438. comp_node, out.layout);
  439. auto tmpv = tmp.as_megdnn();
  440. MGB_TRY {
  441. run(Mode::MUL, inp[0], inp[1], tmpv);
  442. run(Mode::MUL, inp[2], inp[3], out);
  443. run(Mode::ADD, out, tmpv, out);
  444. } MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
  445. return;
  446. }
  447. // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
  448. // scale. MegDNN does not support computing Elemwise for
  449. // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
  450. // passing to MegDNN.
  451. if (inp.size() &&
  452. inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
  453. auto inp_dtype = inp[0].layout.dtype;
  454. DType compute_dtype;
  455. if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
  456. compute_dtype = dtype::Int32();
  457. } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
  458. compute_dtype = dtype::Int8();
  459. } else {
  460. mgb_throw(MegBrainError,
  461. "Unsupported Quantized Elemwise Mode %s: %d on %s",
  462. inp[0].layout.dtype.name(), int(opr->param().mode),
  463. comp_node.to_string().c_str());
  464. }
  465. megdnn::TensorNDArray run_inp(inp);
  466. for (size_t i = 0; i < inp.size(); i++) {
  467. run_inp[i].layout.dtype = compute_dtype;
  468. }
  469. megdnn::TensorND run_out = out;
  470. run_out.layout.dtype = compute_dtype;
  471. opr->exec(run_inp, run_out);
  472. return;
  473. }
  474. opr->exec(inp, out);
  475. }
  476. #if MGB_ENABLE_GRAD
  477. MGB_IMPL_OPR_GRAD(Elemwise) {
  478. SymbolVar i[5];
  479. SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)),
  480. og{out_grad.at(0)}, result;
  481. for (size_t t = 0; t < opr.input().size(); ++ t)
  482. i[t] = opr.input()[t];
  483. if (opr.input().size() >= 2)
  484. i1 = opr.input(1);
  485. if (opr.input().size() >= 3)
  486. i2 = opr.input(2);
  487. // negate after reduce, for better performance
  488. bool negate_result = false;
  489. #define RET(_v) result = (_v); break
  490. #define EL1(_mode, _a) Elemwise::make({_a}, Mode::_mode)
  491. #define EL2(_mode, _a, _b) Elemwise::make({_a, _b}, Mode::_mode)
  492. #define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
  493. #define RET_INVALID() return InvalidGrad::make(opr, wrt_idx)
  494. using Mode = Elemwise::Mode;
  495. switch (opr.param().mode) {
  496. // unary
  497. case Mode::RELU:
  498. case Mode::FUSE_ADD_RELU:
  499. RET(EL2(SWITCH_GT0, out, og));
  500. case Mode::ABS:
  501. RET(EL2(ABS_GRAD, i0, og));
  502. case Mode::ACOS:
  503. negate_result = true;
  504. RET(og / EL1(SIN, out));
  505. case Mode::ASIN:
  506. RET(og / EL1(COS, out));
  507. case Mode::ATAN2:
  508. if (wrt_idx) {
  509. negate_result = true;
  510. }
  511. RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
  512. case Mode::CEIL:
  513. return nullptr;
  514. case Mode::COS:
  515. negate_result = true;
  516. RET(EL1(SIN, i0) * og);
  517. case Mode::EXP:
  518. RET(og * out);
  519. case Mode::EXPM1:
  520. RET(og * EL1(EXP, i0));
  521. case Mode::FLOOR:
  522. return nullptr;
  523. case Mode::LOG:
  524. RET(og / i0);
  525. case Mode::LOG1P:
  526. RET(og / (i0 + 1));
  527. case Mode::NEGATE:
  528. negate_result = true;
  529. RET(og);
  530. case Mode::SIGMOID:
  531. case Mode::FUSE_ADD_SIGMOID:
  532. RET(EL2(SIGMOID_GRAD, out, og));
  533. case Mode::SIN:
  534. RET(EL1(COS, i0) * og);
  535. case Mode::TANH:
  536. case Mode::FUSE_ADD_TANH:
  537. RET(EL2(TANH_GRAD, out, og));
  538. case Mode::FAST_TANH:
  539. RET(EL2(FAST_TANH_GRAD, i0, og));
  540. case Mode::ROUND:
  541. return nullptr;
  542. case Mode::ERF:
  543. RET(EL1(EXP, - i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  544. case Mode::ERFINV:
  545. RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
  546. case Mode::ERFC:
  547. RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  548. case Mode::H_SWISH:
  549. RET(EL2(H_SWISH_GRAD, i0, og));
  550. case Mode::FUSE_ADD_H_SWISH:
  551. RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
  552. case Mode::NOT:
  553. return nullptr;
  554. case Mode::SILU:
  555. RET(EL2(SILU_GRAD, i0, og));
  556. case Mode::GELU:
  557. RET(EL2(GELU_GRAD, i0, og));
  558. // binary
  559. case Mode::ABS_GRAD:
  560. if (wrt_idx == 0) {
  561. return nullptr;
  562. }
  563. RET(EL2(ABS_GRAD, i0, og));
  564. case Mode::ADD:
  565. RET(og);
  566. case Mode::FLOOR_DIV:
  567. return nullptr;
  568. case Mode::MAX:
  569. RET(EL3(COND_LEQ_MOV, i[!wrt_idx], i[wrt_idx], og));
  570. case Mode::MIN:
  571. RET(EL3(COND_LEQ_MOV, i[wrt_idx], i[!wrt_idx], og));
  572. case Mode::MOD:
  573. if (wrt_idx == 0) {
  574. RET(og);
  575. }
  576. RET_INVALID();
  577. case Mode::MUL:
  578. RET(og * i[!wrt_idx]);
  579. case Mode::POW:
  580. if (wrt_idx) {
  581. RET(out * EL1(LOG, i0) * og);
  582. }
  583. RET(og * i1 * EL2(POW, i0, i1 - 1));
  584. case Mode::SIGMOID_GRAD:
  585. if (wrt_idx == 0) {
  586. auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
  587. RET((one - i0 * two) * i1 * og);
  588. }
  589. RET(EL2(SIGMOID_GRAD, i0, og));
  590. case Mode::SUB:
  591. negate_result = wrt_idx;
  592. RET(og);
  593. case Mode::SWITCH_GT0:
  594. if (!wrt_idx)
  595. return nullptr;
  596. RET(EL2(SWITCH_GT0, i0, og));
  597. case Mode::TANH_GRAD:
  598. if (wrt_idx == 0) {
  599. auto mtwo = i0.make_scalar_dt(-2);
  600. RET(mtwo * i0 * i1 * og);
  601. }
  602. RET(EL2(TANH_GRAD, i0, og));
  603. case Mode::TRUE_DIV:
  604. if (wrt_idx == 0) {
  605. RET(og / i1);
  606. }
  607. negate_result = true;
  608. RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
  609. case Mode::LOG_SUM_EXP:
  610. if (wrt_idx == 0) {
  611. RET(og * EL1(SIGMOID, i0 - i1));
  612. }
  613. RET(og * EL1(SIGMOID, i1 - i0));
  614. case Mode::LT:
  615. case Mode::LEQ:
  616. return nullptr;
  617. case Mode::EQ:
  618. RET_INVALID();
  619. case Mode::OR:
  620. case Mode::XOR:
  621. case Mode::AND:
  622. return nullptr;
  623. // ternary
  624. case Mode::COND_LEQ_MOV:
  625. if (wrt_idx <= 1)
  626. return nullptr;
  627. RET(EL3(COND_LEQ_MOV, i0, i1, og));
  628. // fuse oprs
  629. case Mode::FUSE_MUL_ADD3:
  630. if (wrt_idx < 2) {
  631. RET(og * i[wrt_idx ^ 1]);
  632. } else {
  633. RET(og);
  634. }
  635. case Mode::FUSE_MUL_ADD4:
  636. RET(og * i[wrt_idx ^ 1]);
  637. default:
  638. mgb_throw(GraphError, "grad for elemwise mode %s unimplemented",
  639. megdnn::Elemwise::ModeTrait::from_mode(
  640. opr.param().mode).name);
  641. }
  642. #undef EL3
  643. #undef EL2
  644. #undef EL1
  645. #undef RET
  646. if (opr.input_broadcastable()[wrt_idx]) {
  647. result = reduce_sum(result,
  648. opr::GetVarShape::make(opr.input(wrt_idx)));
  649. } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
  650. // forward broadcast for optimizer to work
  651. result = opr::Broadcast::make(result.node()->owner_opr()->input(0),
  652. opr::GetVarShape::make(i[wrt_idx]));
  653. }
  654. if (negate_result)
  655. result = -result;
  656. return result.node();
  657. }
  658. #endif
  659. VarNode* Elemwise::sum_grad_list(VarNode *wrt, VarNodeArray &grads) {
  660. mgb_assert(!grads.empty());
  661. if (grads.size() == 1)
  662. return grads[0];
  663. #if MGB_ENABLE_COND_EXEC
  664. CondExecMerge::modify_grad_sum_list(wrt, grads);
  665. #endif
  666. VarNodeArray mid_results;
  667. VarNode *ret;
  668. if (wrt->owner_graph()->options().graph_opt_level) {
  669. ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
  670. } else {
  671. ret = gopt::elemwise_reduce_var_list(
  672. grads, Elemwise::Mode::ADD, &mid_results);
  673. }
  674. mid_results.swap(grads);
  675. return ret;
  676. }
  677. void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
  678. record_megdnn_opr(deps);
  679. }
  680. Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
  681. auto ret = Super::do_make_node_prop();
  682. for (auto& inp : input()) {
  683. ret->add_dep_type_existing_var(inp,
  684. NodeProp::DepType::VALUE_ALLOW_EMPTY);
  685. }
  686. return ret;
  687. }
  688. /* =========================== TypeCvt =========================== */
  689. MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);
  690. TypeCvt::TypeCvt(
  691. VarNode *inp, DType dest_type, const OperatorNodeConfig &config):
  692. Super{inp->owner_graph(), config, std::string("as") + dest_type.name(),
  693. {inp}}
  694. {
  695. init_megdnn_opr(*this, {});
  696. mgb_assert(dest_type.valid());
  697. add_input({inp});
  698. add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
  699. output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  700. }
  701. SymbolVar TypeCvt::make(
  702. SymbolVar input, DType dest_type, const OperatorNodeConfig &config) {
  703. if (input.dtype() == dest_type)
  704. return input;
  705. return input.insert_single_output_opr<TypeCvt>(
  706. input.node(), dest_type, config);
  707. }
  708. void TypeCvt::perform(DeviceTensorND &dest,
  709. DType dest_type, const DeviceTensorND &src,
  710. intl::UniqPtrWithCN<megdnn::TypeCvt> &opr) {
  711. mgb_assert(src.comp_node() == opr.comp_node());
  712. mgb_assert(dest_type.valid());
  713. if (src.empty()) {
  714. mgb_assert(dest.empty());
  715. return;
  716. }
  717. if (src.dtype() == dest_type) {
  718. dest.copy_from(src);
  719. return;
  720. }
  721. src.comp_node().activate();
  722. dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
  723. opr->exec(src.as_megdnn(), dest.as_megdnn());
  724. }
  725. void TypeCvt::add_input_layout_constraint() {
  726. for (auto i: input()) {
  727. i->add_layout_constraint_contiguous();
  728. }
  729. }
  730. TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
  731. auto ret = Super::do_make_node_prop();
  732. ret->add_dep_type_existing_var(input(0),
  733. NodeProp::DepType::VALUE_ALLOW_EMPTY);
  734. return ret;
  735. }
  736. #if MGB_ENABLE_GRAD
  737. MGB_IMPL_OPR_GRAD(TypeCvt) {
  738. MGB_MARK_USED_VAR(wrt_idx);
  739. auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
  740. if (itype.category() == DTypeCategory::FLOAT &&
  741. otype.category() == DTypeCategory::INT) {
  742. return nullptr;
  743. }
  744. if (itype.category() != DTypeCategory::FLOAT) {
  745. return InvalidGrad::make(opr, 0);
  746. }
  747. return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
  748. }
  749. #endif
  750. void TypeCvt::mem_plan_fwd_in2out_writable() {
  751. bool cond_low_bit =
  752. input(0)->dtype().is_low_bit() && output(0)->dtype().is_low_bit() &&
  753. input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
  754. bool cond_normal = !input(0)->dtype().is_low_bit() &&
  755. !output(0)->dtype().is_low_bit() &&
  756. input(0)->dtype().size() == output(0)->dtype().size();
  757. if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
  758. output(0)->set_fwd_in2out_writable(input(0));
  759. }
  760. }
  761. void TypeCvt::scn_do_execute() {
  762. auto ovar = output(0)->dev_tensor().as_megdnn();
  763. for (size_t i = 0; i < ovar.layout.ndim; ++i) {
  764. if (!ovar.layout[i]) {
  765. // skip execution for empty var
  766. return;
  767. }
  768. }
  769. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
  770. }
  771. void TypeCvt::init_output_static_infer_desc() {
  772. static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
  773. Super::init_output_static_infer_desc();
  774. using namespace cg::static_infer;
  775. auto infer_value = [this](DeviceTensorND &dest, const InpVal &inp) {
  776. auto sopr = static_infer_opr.lock();
  777. perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
  778. return true;
  779. };
  780. owner_graph()->static_infer_manager().register_value_infer(
  781. output(0), {SourceType::DEP, {{input(0), DepType::VALUE}},
  782. infer_value});
  783. }
  784. void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
  785. record_megdnn_opr(deps);
  786. }
  787. /* =========================== AddUpdate =========================== */
  788. MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);
  789. AddUpdate::AddUpdate(VarNode *dest, VarNode *delta,
  790. const Param &param,
  791. const OperatorNodeConfig &config):
  792. Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
  793. m_param{param}
  794. {
  795. auto dest_opr = dest->owner_opr();
  796. mgb_throw_if(dest_opr->same_type<ImmutableTensor>(),
  797. GraphError,
  798. "AddUpdate cannot be applied on ImmutableTensor; ");
  799. add_input({dest, delta});
  800. /*
  801. * here we tell the system that output(0) would force-update input(0); the
  802. * topo-sorting system would ensure that all the readers finish before
  803. * executing this AddUpdate operation
  804. */
  805. add_output(None)->
  806. set_fwd_in2out_writable_force(input(0)).
  807. add_flag(VarNode::Flag::NO_MEM_RECLAIM);
  808. mgb_assert(m_param.disable->dtype() == dtype::Int32{},
  809. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  810. m_param.disable->dtype().name());
  811. add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
  812. add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
  813. add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
  814. add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
  815. }
  816. SymbolVar AddUpdate::make(SymbolVar dest, SymbolVar delta,
  817. const Param &param, const OperatorNodeConfig &config) {
  818. delta = opr::TypeCvt::make(delta, dest.dtype());
  819. return dest.insert_single_output_opr<AddUpdate>(
  820. dest.node(), delta.node(), param, config);
  821. }
  822. cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
  823. auto ret = Super::do_make_node_prop();
  824. ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
  825. return ret;
  826. }
  827. void AddUpdate::create_megdnn_opr() {
  828. set_megdnn_opr(intl::get_megdnn_handle(comp_node())->
  829. create_operator<megdnn::AddUpdate>());
  830. }
  831. void AddUpdate::scn_do_execute() {
  832. mgb_assert(m_param.disable->dtype() == dtype::Int32{},
  833. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  834. m_param.disable->dtype().name());
  835. auto disable = m_param.disable->get_cast<int>();
  836. if(disable == 1) return;
  837. mgb_assert(disable == 0, "disable flag on AddUpdate can only be 0 or 1,"
  838. " got %d actually.", disable);
  839. auto &&dest = output(0)->dev_tensor();
  840. auto &&delta_nobrd = input(1)->dev_tensor();
  841. auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
  842. delta_nobrd.layout().broadcast(dest.shape()), 0));
  843. mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
  844. auto beta = m_param.beta->get_cast<float>();
  845. if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
  846. !m_param.bias->get_cast<bool>()) {
  847. dest.copy_from_fixlayout(delta);
  848. } else {
  849. auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
  850. opr->param() = {
  851. m_param.alpha->get_cast<float>(),
  852. beta,
  853. m_param.bias->get_cast<float>()};
  854. opr->exec(dest.as_megdnn(), delta.as_megdnn());
  855. }
  856. }
  857. void AddUpdate::init_output_static_infer_desc() {
  858. using namespace cg::static_infer;
  859. owner_graph()->static_infer_manager().register_shape_infer(
  860. output(0), ShapeInferDesc::make_identity(input(0)));
  861. }
  862. void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
  863. record_megdnn_opr(deps);
  864. }
  865. #if MGB_ENABLE_GRAD
  866. MGB_IMPL_OPR_GRAD(AddUpdate) {
  867. // actually valid, just not implemented
  868. return InvalidGrad::make(opr, wrt_idx);
  869. }
  870. #endif
  871. /* =========================== Reduce =========================== */
  872. class Reduce::KernScheduler {
  873. class ValueDep final : public ExecDependency {
  874. DeviceTensorStorage m_val;
  875. public:
  876. explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
  877. };
  878. public:
  879. bool has_actual_computing() const {
  880. mgb_assert(m_shape_computed);
  881. return !m_kern_param.empty() || m_apply_side_effect;
  882. }
  883. size_t workspace_size() const {
  884. return m_workspace_spec[2].end();
  885. }
  886. bool shape_computed() const {
  887. return m_shape_computed;
  888. }
  889. //! init shapes in kern param
  890. void init_shapes(
  891. megdnn::Reduce *opr, CompNode comp_node, DType dtype, Mode mode,
  892. TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
  893. void setup_kern_params_layout_and_mode(Mode mode, DType inp_dtype,
  894. TensorShape& inp_shp,
  895. const Param::DataType);
  896. void check_shapes(const TensorShape &ishp, const TensorShape &oshp) {
  897. mgb_assert(m_prev_ishp.eq_shape(ishp) &&
  898. m_prev_oshp.eq_shape(oshp));
  899. }
  900. //! update pointers in kern param; the tensors must have been allocated
  901. void update_ptr(
  902. const DeviceTensorND &input, const DeviceTensorND &dest,
  903. const DeviceTensorND &workspace);
  904. void execute(megdnn::Reduce *opr,
  905. const DeviceTensorND &input, const DeviceTensorND &dest);
  906. void record_execute_deps(ExecDependencyArray& deps) {
  907. if (m_elemwise_trans_opr) {
  908. deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
  909. std::move(m_elemwise_trans_opr)));
  910. }
  911. if (m_typecvt_opr) {
  912. deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
  913. std::move(m_typecvt_opr)));
  914. }
  915. deps.emplace_back(
  916. std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
  917. }
  918. private:
  919. struct KernParam {
  920. megdnn::TensorND input, output;
  921. //! param passed to megdnn
  922. megdnn::param::Reduce kparam;
  923. megdnn::Workspace workspace;
  924. KernParam(Mode mode, int32_t ra):
  925. kparam{mode, ra}
  926. {
  927. }
  928. };
  929. struct SubWorkspace {
  930. size_t size, offset;
  931. size_t end() const {
  932. return size + offset;
  933. }
  934. };
  935. void update_kparam_for_elemwise_side_effect(
  936. CompNode comp_node, Mode mode, const Param::DataType data_type);
  937. bool m_shape_computed = false;
  938. std::vector<KernParam> m_kern_param;
  939. TensorShape m_prev_ishp, m_prev_oshp;
  940. SubWorkspace m_workspace_spec[3]; //! tmp output[2], kern workspce
  941. /*!
  942. * some reduce mode (like SUM_SQR) has side effect of element-wise
  943. * trans. If this is the case and there is no kernel param,
  944. * m_apply_side_effect would be non-null
  945. */
  946. thin_function<void(const DeviceTensorND &in,
  947. const DeviceTensorND &out)>
  948. m_apply_side_effect;
  949. std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
  950. std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
  951. DeviceTensorND m_side_affect_wkspc;
  952. };
  953. void Reduce::KernScheduler::setup_kern_params_layout_and_mode(Mode mode,
  954. DType inp_dtype,
  955. TensorShape& ishp,
  956. const Param::DataType data_type) {
  957. auto prev_dtype = inp_dtype;
  958. for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
  959. auto&& i = m_kern_param[idx];
  960. #if !MEGDNN_DISABLE_FLOAT16
  961. if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
  962. i.input.layout.dtype = inp_dtype;
  963. i.output.layout.dtype = dtype::Float32();
  964. i.kparam.data_type = data_type;
  965. } else if (data_type == Param::DataType::FLOAT_O16xC32) {
  966. i.input.layout.dtype = prev_dtype;
  967. if (idx + 1 == m_kern_param.size()) {
  968. i.output.layout.dtype = dtype::Float16();
  969. i.kparam.data_type = data_type;
  970. }
  971. else {
  972. i.output.layout.dtype = dtype::Float32();
  973. i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
  974. }
  975. } else
  976. #endif
  977. {
  978. mgb_assert(data_type == Param::DataType::DEFAULT || (
  979. data_type == Param::DataType::FLOAT_O32xC32 &&
  980. idx));
  981. i.input.layout.dtype = prev_dtype;
  982. i.output.layout.dtype = prev_dtype;
  983. i.kparam.data_type = Param::DataType::DEFAULT;
  984. }
  985. prev_dtype = i.output.layout.dtype;
  986. i.input.layout.init_contiguous_stride(ishp);
  987. ishp.shape[i.kparam.axis] = 1;
  988. i.output.layout.init_contiguous_stride(ishp);
  989. }
  990. if (mode == Mode::SUM_SQR) {
  991. for (size_t i = 1; i < m_kern_param.size(); ++ i)
  992. m_kern_param[i].kparam.mode = Mode::SUM;
  993. }
  994. }
  995. void Reduce::KernScheduler::init_shapes(
  996. megdnn::Reduce *opr, CompNode comp_node, DType inp_dtype, Mode mode,
  997. TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
  998. mgb_assert(ishp.ndim && oshp.ndim);
  999. if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
  1000. return;
  1001. m_prev_ishp = ishp;
  1002. m_prev_oshp = oshp;
  1003. m_kern_param.clear();
  1004. if (oshp.is_scalar()) {
  1005. // if ishp is non-contiguous, add_layout_constraint_contiguous would be
  1006. // added; so we do not have to worry about this
  1007. ishp.shape[0] = ishp.total_nr_elems();
  1008. ishp.ndim = 1;
  1009. }
  1010. mgb_assert(oshp.ndim == ishp.ndim,
  1011. "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
  1012. ishp.to_string().c_str(), oshp.to_string().c_str());
  1013. for (size_t i = 0; i < ishp.ndim; ++ i) {
  1014. if (ishp.shape[i] != oshp.shape[i]) {
  1015. mgb_assert(oshp.shape[i] == 1,
  1016. "input and output shape mismatch for reduction: "
  1017. "ishp=%s oshp=%s",
  1018. ishp.to_string().c_str(), oshp.to_string().c_str());
  1019. }
  1020. }
  1021. auto remove_axis = [](TensorShape &shp, size_t ax) {
  1022. mgb_assert(shp.ndim > 1);
  1023. for (auto i = ax + 1; i < shp.ndim; ++ i)
  1024. shp.shape[i - 1] = shp.shape[i];
  1025. -- shp.ndim;
  1026. };
  1027. // collapse consecutive shape-1 axes in oshp
  1028. for (size_t i = 0; i < oshp.ndim; ++ i) {
  1029. auto start = i;
  1030. while (i < oshp.ndim && oshp.shape[i] == 1)
  1031. ++ i;
  1032. if (start + 1 < i) {
  1033. for (auto j = start + 1; j < i; ++ j)
  1034. ishp.shape[start] *= ishp.shape[j];
  1035. for (auto j = start + 1; j < i; ++ j) {
  1036. remove_axis(ishp, start + 1);
  1037. remove_axis(oshp, start + 1);
  1038. }
  1039. i = start;
  1040. }
  1041. }
  1042. for (uint32_t i = 0; i < ishp.ndim; ++ i) {
  1043. if (ishp.shape[i] != oshp.shape[i]) {
  1044. mgb_assert(oshp.shape[i] == 1);
  1045. m_kern_param.push_back({mode, static_cast<int32_t>(i)});
  1046. }
  1047. }
  1048. // sort according to reduction size, so workspace can be smaller
  1049. small_sort(m_kern_param.begin(), m_kern_param.end(),
  1050. [&](const KernParam &a, const KernParam &b) {
  1051. return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
  1052. });
  1053. // init kparam input/output layout
  1054. setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);
  1055. // init workspace size
  1056. memset(m_workspace_spec, 0, sizeof(m_workspace_spec));
  1057. for (auto&& i : m_kern_param) {
  1058. opr->param() = i.kparam;
  1059. i.workspace.size = opr->get_workspace_in_bytes(
  1060. i.input.layout, i.output.layout);
  1061. update_max(m_workspace_spec[2].size, i.workspace.size);
  1062. }
  1063. mgb_assert(ishp.eq_shape(oshp));
  1064. if (m_kern_param.size() >= 2) {
  1065. m_workspace_spec[0].size =
  1066. m_kern_param[1].input.layout.span().high_byte;
  1067. }
  1068. if (m_kern_param.size() >= 3) {
  1069. m_workspace_spec[1].size =
  1070. m_kern_param[2].input.layout.span().high_byte;
  1071. }
  1072. auto align = comp_node.get_mem_addr_alignment();
  1073. for (int i = 0; i < 2; ++ i) {
  1074. m_workspace_spec[i + 1].offset = get_aligned_power2(
  1075. m_workspace_spec[i].end(), align);
  1076. }
  1077. update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);
  1078. m_shape_computed = true;
  1079. }
  1080. void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
  1081. CompNode comp_node, Mode mode, const Param::DataType data_type) {
  1082. m_apply_side_effect = nullptr;
  1083. m_elemwise_trans_opr.reset();
  1084. m_typecvt_opr.reset();
  1085. if (!m_kern_param.empty()) {
  1086. // no need to set m_apply_side_effect
  1087. return;
  1088. } /* else */
  1089. // case A: input.layout == output.layout
  1090. // case B: input.total_nr_elems == 1 and output is a scalar
  1091. if (mode == Mode::SUM_SQR) {
  1092. m_elemwise_trans_opr = intl::get_megdnn_handle(comp_node)->
  1093. create_operator<megdnn::Elemwise>();
  1094. m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
  1095. }
  1096. if (data_type != Param::DataType::DEFAULT) {
  1097. m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
  1098. m_typecvt_opr = intl::get_megdnn_handle(comp_node)->
  1099. create_operator<megdnn::TypeCvt>();
  1100. }
  1101. if (!m_typecvt_opr && !m_elemwise_trans_opr)
  1102. return;
  1103. m_apply_side_effect = [this](const DeviceTensorND &in,
  1104. const DeviceTensorND &out) {
  1105. if (m_typecvt_opr) {
  1106. m_side_affect_wkspc.resize(in.shape());
  1107. }
  1108. if (!m_elemwise_trans_opr) {
  1109. mgb_assert(m_typecvt_opr);
  1110. m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
  1111. return;
  1112. }
  1113. auto im = in.as_megdnn();
  1114. megdnn::TensorND wm;
  1115. if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
  1116. m_side_affect_wkspc.resize(in.shape());
  1117. wm = m_side_affect_wkspc.as_megdnn();
  1118. m_typecvt_opr->exec(im, wm);
  1119. } else {
  1120. wm = im;
  1121. }
  1122. if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
  1123. m_elemwise_trans_opr->exec({wm, wm}, wm);
  1124. m_typecvt_opr->exec(wm, out.as_megdnn());
  1125. } else {
  1126. auto &&wshp = wm.layout;
  1127. if (wshp.ndim != out.layout().ndim) {
  1128. // to ensure that wkspc.ndim equals out.ndim in the case:
  1129. // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
  1130. // may lead the 'TensorShape Dimension' assertion failed in
  1131. // the following broadcast operator
  1132. mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
  1133. wshp.ndim = 1;
  1134. }
  1135. m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
  1136. }
  1137. };
  1138. }
  1139. void Reduce::KernScheduler::update_ptr(
  1140. const DeviceTensorND &input, const DeviceTensorND &dest,
  1141. const DeviceTensorND &workspace) {
  1142. auto dtype = dest.layout().dtype;
  1143. mgb_assert(dtype.valid());
  1144. mgb_assert(m_shape_computed);
  1145. if (workspace_size()) {
  1146. mgb_assert(workspace.layout().dtype == dtype::Byte() &&
  1147. workspace.layout().ndim == 1 &&
  1148. workspace.shape()[0] >= workspace_size());
  1149. }
  1150. if (m_kern_param.empty())
  1151. return;
  1152. mgb_assert(input.layout().total_nr_elems() ==
  1153. m_kern_param[0].input.layout.total_nr_elems());
  1154. mgb_assert(dest.shape().total_nr_elems() ==
  1155. m_kern_param.back().output.layout.total_nr_elems());
  1156. m_kern_param[0].input.raw_ptr = const_cast<dt_byte*>(input.raw_ptr());
  1157. dt_byte
  1158. *workspace_begin = workspace_size() ?
  1159. const_cast<dt_byte*>(workspace.raw_ptr()) : nullptr,
  1160. *tmp_reduce_ptr[2] = {
  1161. workspace_begin + m_workspace_spec[0].offset,
  1162. workspace_begin + m_workspace_spec[1].offset},
  1163. *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
  1164. for (size_t i = 0; i < m_kern_param.size() - 1; ++ i) {
  1165. auto optr = tmp_reduce_ptr[i % 2];
  1166. m_kern_param[i].output.raw_ptr = optr;
  1167. m_kern_param[i + 1].input.raw_ptr = optr;
  1168. }
  1169. for (auto &&i: m_kern_param)
  1170. i.workspace.raw_ptr = kern_workspace;
  1171. m_kern_param.back().output.raw_ptr = const_cast<dt_byte*>(dest.raw_ptr());
  1172. }
  1173. void Reduce::KernScheduler::execute(
  1174. megdnn::Reduce *opr,
  1175. const DeviceTensorND &input, const DeviceTensorND &dest) {
  1176. if (m_apply_side_effect) {
  1177. mgb_assert(m_kern_param.empty());
  1178. m_apply_side_effect(input, dest);
  1179. return;
  1180. }
  1181. mgb_assert(!m_kern_param.empty());
  1182. mgb_assert(input.layout().is_contiguous() &&
  1183. input.raw_ptr() == m_kern_param[0].input.raw_ptr &&
  1184. dest.raw_ptr() == m_kern_param.back().output.raw_ptr);
  1185. for (auto &&i: m_kern_param) {
  1186. opr->param() = i.KernParam::kparam;
  1187. opr->exec(i.input, i.output, i.workspace);
  1188. }
  1189. }
  1190. class Reduce::OutTensorShapeExtender {
  1191. public:
  1192. OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
  1193. : m_oshp(oshp) {
  1194. mgb_assert(oshp.ndim <= ishp.ndim,
  1195. "output ndim should be less and equal than input ndim for "
  1196. "reduction: "
  1197. "ishp=%s oshp=%s",
  1198. ishp.to_string().c_str(), oshp.to_string().c_str());
  1199. // Ex. ishp = (a, b, c, d), oshp = (c, d)
  1200. if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
  1201. size_t ndim_diff = ishp.ndim - oshp.ndim;
  1202. auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
  1203. for (size_t i = 0; i < ishp.ndim; ++i)
  1204. if (i < ndim_diff)
  1205. canonized_oshp[i] = 1;
  1206. else
  1207. canonized_oshp[i] = oshp[i - ndim_diff];
  1208. canonized_oshp.ndim = ishp.ndim;
  1209. }
  1210. }
  1211. const TensorShape& get() const {
  1212. return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
  1213. : m_oshp;
  1214. }
  1215. private:
  1216. Maybe<TensorShape> m_canonized_oshp_storage;
  1217. const TensorShape& m_oshp;
  1218. };
  1219. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
  1220. Reduce::Reduce(VarNode *inp, VarNode *target_shape, const Param &param,
  1221. const OperatorNodeConfig &config):
  1222. Super{inp->owner_graph(), config,
  1223. ssprintf("reduce%d", static_cast<int>(param.mode)), {inp}},
  1224. m_param{param}, m_kern_scheduler{std::make_unique<KernScheduler>()}
  1225. {
  1226. add_input({inp});
  1227. if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
  1228. inp->dtype().category() == DTypeCategory::QUANTIZED) {
  1229. mgb_assert(param.mode != Param::Mode::PRODUCT,
  1230. "Reduce does not support PRODUCT mode on quantized input");
  1231. mgb_assert(param.mode != Param::Mode::SUM_SQR,
  1232. "Reduce does not support SUM_SQR mode on quantized input");
  1233. mgb_assert(param.mode != Param::Mode::SUM,
  1234. "Reduce does not support SUM mode on quantized input");
  1235. }
  1236. DType out_dtype;
  1237. switch (param.data_type) {
  1238. case Param::DataType::DEFAULT:
  1239. out_dtype = inp->dtype();
  1240. break;
  1241. #if !MEGDNN_DISABLE_FLOAT16
  1242. case Param::DataType::FLOAT_O16xC32:
  1243. out_dtype = dtype::Float16();
  1244. break;
  1245. case Param::DataType::FLOAT_IO16xC32:
  1246. mgb_assert(false);
  1247. #endif
  1248. case Param::DataType::FLOAT_O32xC32:
  1249. out_dtype = dtype::Float32();
  1250. break;
  1251. case Param::DataType::QUINT_I8xO32:
  1252. out_dtype = dtype::QuantizedS32(
  1253. inp->dtype().param<dtype::Quantized8Asymm>().scale);
  1254. break;
  1255. case Param::DataType::QINT_I8xO32:
  1256. out_dtype = dtype::QuantizedS32(
  1257. inp->dtype().param<dtype::QuantizedS8>().scale);
  1258. break;
  1259. default:
  1260. mgb_throw(GraphError, "invalid param data_type: %d",
  1261. int(param.data_type));
  1262. }
  1263. add_output(None)->dtype(out_dtype);
  1264. cg::add_workspace_output(this);
  1265. add_equivalence_component<PODHash<Param>>(&m_param);
  1266. if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
  1267. mgb_throw_if(target_shape, GraphError,
  1268. "could not specify both axis and target shape");
  1269. m_is_symtshp = false;
  1270. } else {
  1271. mgb_throw_if(!target_shape, GraphError,
  1272. "neither axis or target_shape specified");
  1273. add_input({target_shape});
  1274. m_is_symtshp = true;
  1275. outshape_by_symvar_enable(0, 1);
  1276. }
  1277. }
  1278. Reduce::~Reduce() = default;
  1279. SymbolVar Reduce::make(
  1280. SymbolVar src, Param param, SymbolVar target_shape,
  1281. const OperatorNodeConfig &config) {
  1282. if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
  1283. mgb_log_warn("DataType FLOAT_IO16xC32 has been deprecated "
  1284. "use FLOAT_O16xC32 instead");
  1285. param.data_type = Param::DataType::FLOAT_O16xC32;
  1286. }
  1287. if (param.mode == Mode::SUM &&
  1288. src.node()->owner_opr()->same_type<Elemwise>()) {
  1289. // replace sum(x^2) by sum_sqr(x)
  1290. auto &&opr = src.node()->owner_opr()->cast_final<Elemwise>();
  1291. if (opr.param().mode == Elemwise::Mode::POW) {
  1292. mgb_assert(opr.input().size() == 2);
  1293. auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
  1294. if (pow.valid() && pow->get_cast<float>() == 2) {
  1295. src = opr.input(0);
  1296. param.mode = Mode::SUM_SQR;
  1297. }
  1298. }
  1299. }
  1300. return src.insert_single_output_opr<Reduce>(
  1301. src.node(), target_shape.node(), param, config);
  1302. }
  1303. void Reduce::outshape_by_symvar_do_get_output_shape(
  1304. TensorShape &dest, const ShapeInferInfo &shpinfo) {
  1305. cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
  1306. }
  1307. void Reduce::init_output_static_infer_desc() {
  1308. using namespace cg::static_infer;
  1309. auto &&mgr = owner_graph()->static_infer_manager();
  1310. // infer output shape
  1311. if (m_is_symtshp) {
  1312. // reduce to target shape
  1313. Super::init_output_static_infer_desc();
  1314. } else {
  1315. // reduce along axis
  1316. auto infer_shape = [this](TensorShape &dest, const InpVal &inp) {
  1317. dest = inp.val.at(0).shape();
  1318. mgb_assert(m_param.axis < static_cast<int>(dest.ndim) &&
  1319. m_param.axis >= -static_cast<int>(dest.ndim),
  1320. "invalid axis for reduction: shape=%s axis=%d",
  1321. dest.to_string().c_str(), m_param.axis);
  1322. int real_axis = m_param.axis;
  1323. if (real_axis < 0)
  1324. real_axis += dest.ndim;
  1325. dest.shape[real_axis] = 1;
  1326. return true;
  1327. };
  1328. mgr.register_shape_infer(
  1329. output(0), {
  1330. SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
  1331. }
  1332. // infer workspace
  1333. auto infer_workspace = [this](TensorShape &dest, const InpVal &inp) {
  1334. init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
  1335. dest.ndim = 1;
  1336. dest.shape[0] = m_kern_scheduler->workspace_size();
  1337. return true;
  1338. };
  1339. mgr.register_shape_infer(output(1),
  1340. {SourceType::DEP,
  1341. {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
  1342. infer_workspace});
  1343. // infer value
  1344. static StaticInferOpr<megdnn::Reduce> static_infer_opr;
  1345. auto infer_value = [this](DeviceTensorND &dest, const InpVal &inp) {
  1346. DeviceTensorND workspace;
  1347. auto sopr = static_infer_opr.lock();
  1348. perform(m_param.mode, dest, workspace, inp.val[0].value(),
  1349. output(0)->dtype(), inp.val.at(1).shape(), sopr(),
  1350. m_param.data_type);
  1351. return true;
  1352. };
  1353. mgr.register_value_infer(output(0),
  1354. {SourceType::DEP,
  1355. {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
  1356. infer_value});
  1357. }
  1358. void Reduce::init_kern_sched_shape(const TensorShape& ishp,
  1359. const TensorShape& oshp) {
  1360. OutTensorShapeExtender extender(ishp, oshp);
  1361. auto&& canonized_oshp = extender.get();
  1362. m_kern_scheduler->init_shapes(static_cast<megdnn::Reduce*>(megdnn_opr()),
  1363. comp_node(), input(0)->dtype(), m_param.mode,
  1364. ishp, canonized_oshp, m_param.data_type);
  1365. }
  1366. cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
  1367. auto on_mem_status_changed = [this]() {
  1368. auto&& ishp = input(0)->shape();
  1369. auto&& oshp = output(0)->shape();
  1370. OutTensorShapeExtender extender(ishp, oshp);
  1371. auto&& canonized_oshp = extender.get();
  1372. m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
  1373. m_kern_scheduler->update_ptr(
  1374. input(0)->dev_tensor(), output(0)->dev_tensor(),
  1375. output(1)->shape()[0] ? output(1)->dev_tensor()
  1376. : DeviceTensorND{});
  1377. };
  1378. return {on_mem_status_changed};
  1379. }
  1380. void Reduce::mem_plan_fwd_in2out_readonly() {
  1381. init_kern_sched_shape(input(0)->shape(), output(0)->shape());
  1382. if (!m_kern_scheduler->has_actual_computing()) {
  1383. // forward memory if no actual computing needed
  1384. if (!output(0)->mem_plan().valid()) {
  1385. // output(0) is dynamic but current is staic alloc phase (for
  1386. // workspace)
  1387. return;
  1388. }
  1389. auto&& ily = input(0)->layout();
  1390. auto&& oly = output(0)->layout();
  1391. const TensorLayout* fwd_spec = nullptr;
  1392. Maybe<TensorLayout> ily_modified_storage;
  1393. if (!ily.eq_shape(oly)) {
  1394. auto&& ily_modified = ily_modified_storage.emplace(ily);
  1395. mgb_assert(ily.ndim > oly.ndim);
  1396. for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
  1397. mgb_assert(ily.shape[i] == 1);
  1398. ily_modified = ily_modified.reshape(oly);
  1399. fwd_spec = &ily_modified;
  1400. } else {
  1401. fwd_spec = &ily;
  1402. }
  1403. m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
  1404. input(0), SubTensorSpec::make_from_layout(*fwd_spec));
  1405. }
  1406. }
  1407. void Reduce::add_input_layout_constraint() {
  1408. if (!cg::is_static_var_shape(output(0))) {
  1409. // output shape can not be inferred; require contiguous to be safe
  1410. input(0)->add_layout_constraint_contiguous();
  1411. } else {
  1412. auto check = [this](const TensorLayout &ily) {
  1413. auto &&mgr = owner_graph()->static_infer_manager();
  1414. auto oshp = mgr.infer_shape(output(0));
  1415. init_kern_sched_shape(ily, oshp);
  1416. if (m_kern_scheduler->has_actual_computing())
  1417. return ily.is_contiguous();
  1418. return true;
  1419. };
  1420. input(0)->add_layout_constraint(check);
  1421. }
  1422. }
  1423. void Reduce::scn_do_execute() {
  1424. auto&& inp = input(0)->dev_tensor();
  1425. auto&& out = output(0)->dev_tensor();
  1426. auto&& ishp = input(0)->shape();
  1427. auto&& oshp = output(0)->shape();
  1428. const DeviceTensorND* out_ptr;
  1429. Maybe<DeviceTensorND> canonized_storage;
  1430. OutTensorShapeExtender extender(ishp, oshp);
  1431. auto&& canonized_oshp = extender.get();
  1432. if (canonized_oshp.ndim != out.shape().ndim) {
  1433. auto&& canonized_out = canonized_storage.emplace(out);
  1434. canonized_out.reset(
  1435. canonized_out.storage(),
  1436. canonized_out.layout().reshape(canonized_oshp));
  1437. out_ptr = &canonized_out;
  1438. } else {
  1439. out_ptr = &out;
  1440. }
  1441. // shape initialized either in deducing workspace,
  1442. // mem_plan_fwd_in2out_readonly, or check input layout
  1443. m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());
  1444. if (m_kern_scheduler->has_actual_computing()) {
  1445. m_kern_scheduler->execute(static_cast<megdnn::Reduce*>(megdnn_opr()),
  1446. inp, *out_ptr);
  1447. } else {
  1448. // no reduction needed, just forward
  1449. if (m_mem_fwd_success) {
  1450. mgb_assert(inp.raw_ptr() == out_ptr->raw_ptr() &&
  1451. out_ptr->layout().total_nr_elems() ==
  1452. inp.layout().total_nr_elems());
  1453. } else {
  1454. if (!out_ptr->shape().eq_shape(inp.shape())) {
  1455. mgb_assert(out_ptr->shape().is_scalar() &&
  1456. inp.shape().total_nr_elems() == 1);
  1457. out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
  1458. .copy_from_fixlayout(inp);
  1459. } else {
  1460. out_ptr->copy_from_fixlayout(inp);
  1461. }
  1462. }
  1463. }
  1464. }
  1465. void Reduce::perform(
  1466. Mode mode,
  1467. DeviceTensorND &dest, DeviceTensorND &workspace,
  1468. const DeviceTensorND &input,
  1469. const DType &target_dtype,
  1470. const TensorShape &target_shape,
  1471. intl::UniqPtrWithCN<megdnn::Reduce> &opr, const Param::DataType data_type) {
  1472. mgb_assert(!dest.storage().comp_node_valid() ||
  1473. opr.comp_node() == dest.comp_node());
  1474. KernScheduler ksched;
  1475. OutTensorShapeExtender extender(input.shape(), target_shape);
  1476. auto&& canonized_oshp = extender.get();
  1477. ksched.init_shapes(opr.get(), opr.comp_node(), input.layout().dtype,
  1478. mode, input.shape(), canonized_oshp, data_type);
  1479. if (!ksched.has_actual_computing()) {
  1480. mgb_assert(target_shape.total_nr_elems() ==
  1481. input.layout().total_nr_elems());
  1482. dest.copy_from(input);
  1483. dest.reset(dest.storage(), {target_shape, dest.dtype()});
  1484. return;
  1485. }
  1486. workspace.
  1487. comp_node(opr.comp_node()).
  1488. dtype(dtype::Byte());
  1489. size_t workspace_size = ksched.workspace_size();
  1490. DeviceTensorND input_contig_storage;
  1491. const DeviceTensorND *input_contig = &input;
  1492. if (!input.layout().is_contiguous()) {
  1493. auto offset = get_aligned_power2(
  1494. workspace_size, opr.comp_node().get_mem_addr_alignment());
  1495. workspace_size = offset +
  1496. input.dtype().size(input.shape().total_nr_elems());
  1497. workspace.resize({workspace_size});
  1498. input_contig_storage.
  1499. reset(workspace.storage().sub(offset), {
  1500. input.shape(), input.dtype()}).
  1501. copy_from(input);
  1502. input_contig = &input_contig_storage;
  1503. } else {
  1504. workspace.resize({workspace_size});
  1505. }
  1506. opr.comp_node().activate();
  1507. dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
  1508. ksched.update_ptr(*input_contig, dest, workspace);
  1509. ksched.execute(opr.get(), *input_contig, dest);
  1510. }
  1511. void Reduce::create_megdnn_opr() {
  1512. set_megdnn_opr(intl::get_megdnn_handle(comp_node())->
  1513. create_operator<megdnn::Reduce>());
  1514. }
  1515. #if MGB_ENABLE_GRAD
  1516. MGB_IMPL_OPR_GRAD(Reduce) {
  1517. for (size_t i = 1; i < opr.output().size(); ++ i)
  1518. mgb_assert(!out_grad[i]);
  1519. if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
  1520. return InvalidGrad::make(opr, wrt_idx);
  1521. SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
  1522. constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
  1523. using Mode = Reduce::Mode;
  1524. SymbolVar grad = [&]() {
  1525. switch (opr.param().mode) {
  1526. case Mode::SUM:
  1527. return Broadcast::make(og, GetVarShape::make(iv));
  1528. case Mode::SUM_SQR:
  1529. return (og * og.make_scalar_dt(2) * iv);
  1530. case Mode::PRODUCT:
  1531. return ((og * ov) / iv);
  1532. case Mode::MIN:
  1533. return Elemwise::make({iv, ov, og}, cmv);
  1534. case Mode::MAX:
  1535. return Elemwise::make({ov, iv, og}, cmv);
  1536. case Mode::MEAN: {
  1537. auto og_shape = opr::GetVarShape::make(og),
  1538. iv_shape = opr::GetVarShape::make(iv),
  1539. scale = div(
  1540. opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
  1541. opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
  1542. return scale * Broadcast::make(og, GetVarShape::make(iv));
  1543. }
  1544. default:
  1545. mgb_throw(MegBrainError, "bad reduce mode");
  1546. }
  1547. }();
  1548. grad = TypeCvt::make(grad, iv.dtype());
  1549. return grad.node();
  1550. }
  1551. #endif
  1552. void Reduce::record_execute_deps(ExecDependencyArray& deps) {
  1553. record_megdnn_opr(deps);
  1554. m_kern_scheduler->record_execute_deps(deps);
  1555. }
  1556. /* =========================== PowC =========================== */
  1557. MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);
  1558. PowC::PowC(VarNode *i0, const Param &param, const OperatorNodeConfig &config)
  1559. : Super(OperatorNodeBaseCtorParam{ i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}} ) {
  1560. init_megdnn_opr(*this, param);
  1561. add_input({i0});
  1562. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  1563. intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
  1564. }
  1565. SymbolVar PowC::make(SymbolVar x, const Param& param,
  1566. const OperatorNodeConfig& config) {
  1567. if (almost_equal(param.exp, 1.f)) {
  1568. return x;
  1569. }
  1570. if (almost_equal(param.exp, 0.f)) {
  1571. return x.make_scalar_dt(1).broadcast(x.symshape());
  1572. }
  1573. return x.insert_single_output_opr<PowC>(x.node(), param, config);
  1574. }
  1575. void PowC::add_input_layout_constraint() {
  1576. input(0)->add_layout_constraint_monotone();
  1577. }
  1578. void PowC::mem_plan_fwd_in2out_writable() {
  1579. output(0)->set_fwd_in2out_writable(input(0));
  1580. }
  1581. void PowC::init_output_static_infer_desc() {
  1582. Super::init_output_static_infer_desc();
  1583. static StaticInferOpr<megdnn::PowC> static_infer_opr;
  1584. using namespace cg::static_infer;
  1585. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  1586. auto infer_opr_lock = static_infer_opr.lock();
  1587. auto&& infer_opr = infer_opr_lock();
  1588. infer_opr->param() = this->param();
  1589. auto&& ival = inp.val[0].value().as_megdnn();
  1590. infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
  1591. return true;
  1592. };
  1593. owner_graph()->static_infer_manager().register_value_infer(
  1594. output(0),
  1595. {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
  1596. }
  1597. void PowC::scn_do_execute() {
  1598. if (input(0)->dev_tensor().empty()) {
  1599. mgb_assert(output(0)->dev_tensor().empty());
  1600. return;
  1601. }
  1602. mgb_assert(!output(0)->dev_tensor().empty());
  1603. Super::scn_do_execute();
  1604. }
  1605. PowC::NodeProp* PowC::do_make_node_prop() const {
  1606. auto ret = Super::do_make_node_prop();
  1607. ret->add_dep_type_existing_var(input(0),
  1608. NodeProp::DepType::VALUE_ALLOW_EMPTY);
  1609. return ret;
  1610. }
  1611. #if MGB_ENABLE_GRAD
  1612. MGB_IMPL_OPR_GRAD(PowC) {
  1613. auto exp = opr.param().exp;
  1614. return (exp * SymbolVar{out_grad[0]} *
  1615. PowC::make(opr.input(0), exp - 1, opr.config()))
  1616. .node();
  1617. }
  1618. #endif
  1619. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台