You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import math
  11. import multiprocessing
  12. import platform
  13. import queue
  14. import random
  15. import time
  16. import numpy as np
  17. from ..logger import get_logger
  18. from ..random.rng import _random_seed_generator
  19. from .collator import Collator
  20. from .dataset import Dataset, MapDataset, StreamDataset
  21. from .sampler import Sampler, SequentialSampler, StreamSampler
  22. from .transform import PseudoTransform, Transform
  23. logger = get_logger(__name__)
  24. MP_QUEUE_GET_TIMEOUT = 5
  25. class DataLoader:
  26. __initialized = False
  27. def __init__(
  28. self,
  29. dataset: Dataset,
  30. sampler: Sampler = None,
  31. transform: Transform = None,
  32. collator: Collator = None,
  33. num_workers: int = 0,
  34. timeout: int = 0,
  35. divide: bool = False,
  36. ):
  37. r"""
  38. Provides a convenient way to iterate on a given dataset.
  39. `DataLoader` combines a dataset with `sampler`, `transform` and `collator`,
  40. make it flexible to get minibatch continually from a dataset.
  41. :type dataset: Dataset
  42. :param dataset: dataset from which to load the minibatch.
  43. :type sampler: Sampler
  44. :param sampler: defines the strategy to sample data from the dataset.
  45. :type transform: Transform
  46. :param transform: defined the transforming strategy for a sampled batch.
  47. Default: None
  48. :type collator: Collator
  49. :param collator: defined the merging strategy for a transformed batch.
  50. Default: None
  51. :type num_workers: int
  52. :param num_workers: the number of sub-process to load, transform and collate
  53. the batch. ``0`` means using single-process. Default: 0
  54. :type timeout: int
  55. :param timeout: if positive, means the timeout value(second) for collecting a
  56. batch from workers. Default: 0
  57. :type divide: bool
  58. :param divide: define the paralleling strategy in multi-processing mode.
  59. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  60. the workers will process these pieces parallelly. ``False`` means
  61. different sub-process will process different batch. Default: False
  62. """
  63. if num_workers < 0:
  64. raise ValueError("num_workers should not be negative")
  65. if timeout < 0:
  66. raise ValueError("timeout should not be negative")
  67. if divide and num_workers <= 1:
  68. raise ValueError("divide should not be set to True when num_workers <= 1")
  69. self.dataset = dataset
  70. self.num_workers = num_workers
  71. self.timeout = timeout
  72. self.divide = divide
  73. if sampler is None:
  74. if isinstance(dataset, MapDataset):
  75. self.sampler = SequentialSampler(dataset, batch_size=1, drop_last=False)
  76. elif isinstance(dataset, StreamDataset):
  77. self.sampler = StreamSampler(batch_size=1)
  78. else:
  79. raise TypeError(
  80. "can not recognize this kind of dataset: %s" % type(dataset)
  81. )
  82. else:
  83. self.sampler = sampler
  84. if divide:
  85. if self.sampler.batch_size <= self.num_workers:
  86. raise ValueError(
  87. "batch size must not smaller than num_workers in divide mode."
  88. )
  89. elif self.sampler.batch_size % self.num_workers:
  90. logger.warning(
  91. "batch size is not divisible by num_workers, may lose performance in divide mode."
  92. )
  93. if transform is None:
  94. self.transform = PseudoTransform()
  95. else:
  96. self.transform = transform
  97. if collator is None:
  98. self.collator = Collator()
  99. else:
  100. self.collator = collator
  101. self.__initialized = True
  102. def __iter__(self):
  103. if platform.system() == "Windows" and self.num_workers > 0:
  104. print(
  105. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  106. )
  107. self.num_workers = 0
  108. if isinstance(self.dataset, StreamDataset):
  109. if not self.num_workers:
  110. return _SerialStreamDataLoaderIter(self)
  111. else:
  112. return _ParallelStreamDataLoaderIter(self)
  113. elif isinstance(self.dataset, MapDataset):
  114. if not self.num_workers:
  115. return _SerialMapDataLoaderIter(self)
  116. else:
  117. return _ParallelMapDataLoaderIter(self)
  118. else:
  119. raise TypeError(
  120. "can not recognize this kind of dataset: %s" % type(self.dataset)
  121. )
  122. def __len__(self):
  123. return len(self.sampler)
  124. class _BaseMapDataLoaderIter:
  125. def __init__(self, loader):
  126. self.dataset = loader.dataset
  127. self.sampler = loader.sampler
  128. self.seed = _random_seed_generator().__next__()
  129. self.transform = loader.transform
  130. self.collator = loader.collator
  131. self.num_workers = loader.num_workers
  132. self.timeout = loader.timeout
  133. self.divide = loader.divide
  134. self.num_processed = 0
  135. def _get_next_batch(self):
  136. raise NotImplementedError
  137. def __len__(self):
  138. return len(self.sampler)
  139. def __iter__(self):
  140. return self
  141. def __next__(self):
  142. if self.num_processed >= len(self):
  143. raise StopIteration
  144. minibatch = self._get_next_batch()
  145. self.num_processed += 1
  146. return minibatch
  147. class _SerialMapDataLoaderIter(_BaseMapDataLoaderIter):
  148. def __init__(self, loader):
  149. super(_SerialMapDataLoaderIter, self).__init__(loader)
  150. self.indices_iter = iter(self.sampler)
  151. def _get_next_batch(self):
  152. indices = next(self.indices_iter)
  153. items = [self.dataset[idx] for idx in indices]
  154. trans_items = self.transform.apply_batch(items)
  155. return self.collator.apply(trans_items)
  156. class _ParallelMapDataLoaderIter(_BaseMapDataLoaderIter):
  157. __initialized = False
  158. def __init__(self, loader):
  159. super(_ParallelMapDataLoaderIter, self).__init__(loader)
  160. self.task_queues = [
  161. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  162. ]
  163. self.feed_batch_idx = multiprocessing.Value("i", 0)
  164. self.target_batch_idx = multiprocessing.Value("i", 0)
  165. self.shutdown_flag = multiprocessing.Value("i", 0)
  166. self.trans_data_queues = [
  167. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  168. ]
  169. # use shared-memory queue implemented by pyarrow plasma store.
  170. from ._queue import PlasmaShmQueue
  171. self.batch_queue = PlasmaShmQueue(maxsize=2)
  172. self.task_feeding_worker = multiprocessing.Process(
  173. target=_task_feeding_loop,
  174. args=(
  175. iter(self.sampler),
  176. self.task_queues,
  177. self.num_workers,
  178. self.divide,
  179. self.shutdown_flag,
  180. self.feed_batch_idx,
  181. ),
  182. daemon=True,
  183. )
  184. self.task_feeding_worker.start()
  185. self.workers = []
  186. for worker_id in range(self.num_workers):
  187. worker = multiprocessing.Process(
  188. target=_worker_loop,
  189. args=(
  190. self.dataset,
  191. self.task_queues[worker_id],
  192. self.trans_data_queues[worker_id],
  193. self.transform,
  194. self.seed + worker_id + 1,
  195. self.shutdown_flag,
  196. ),
  197. daemon=True,
  198. )
  199. worker.start()
  200. self.workers.append(worker)
  201. if self.divide:
  202. self.data_collecting_worker = multiprocessing.Process(
  203. target=_data_gathering_loop,
  204. args=(
  205. self.trans_data_queues,
  206. self.batch_queue,
  207. self.collator,
  208. len(self),
  209. self.num_workers,
  210. self.shutdown_flag,
  211. self.target_batch_idx,
  212. ),
  213. daemon=True,
  214. )
  215. else:
  216. self.data_collecting_worker = multiprocessing.Process(
  217. target=_data_selecting_loop,
  218. args=(
  219. self.trans_data_queues,
  220. self.batch_queue,
  221. self.collator,
  222. len(self),
  223. self.num_workers,
  224. self.shutdown_flag,
  225. self.target_batch_idx,
  226. ),
  227. daemon=True,
  228. )
  229. self.data_collecting_worker.start()
  230. self.__initialized = True
  231. def _check_workers(self):
  232. # Check the status of each worker.
  233. if not self.data_collecting_worker.is_alive():
  234. exitcode = self.task_feeding_worker.exitcode
  235. if exitcode != 0:
  236. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  237. if not self.task_feeding_worker.is_alive():
  238. exitcode = self.task_feeding_worker.exitcode
  239. if exitcode != 0:
  240. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  241. for worker_id, worker in enumerate(self.workers):
  242. if not worker.is_alive():
  243. exitcode = worker.exitcode
  244. if exitcode != 0:
  245. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  246. logger.debug("all workers are alive.")
  247. def _try_get_next_batch(self):
  248. start_time = time.time()
  249. while True:
  250. self._check_workers()
  251. try:
  252. return self.batch_queue.get(timeout=1)
  253. except queue.Empty:
  254. logger.debug("batch queue empty!")
  255. waited_time = time.time() - start_time
  256. if self.timeout > 0:
  257. if waited_time > self.timeout:
  258. raise RuntimeError("get_next_batch timeout!")
  259. def _get_next_batch(self):
  260. batch_data = self._try_get_next_batch()
  261. return batch_data
  262. def _shutdown(self):
  263. with self.shutdown_flag.get_lock():
  264. self.shutdown_flag.value = 1
  265. if self.task_feeding_worker.is_alive():
  266. self.task_feeding_worker.terminate()
  267. self.task_feeding_worker.join()
  268. if self.data_collecting_worker.is_alive():
  269. self.data_collecting_worker.terminate()
  270. self.data_collecting_worker.join()
  271. for worker in self.workers:
  272. if worker.is_alive():
  273. worker.terminate()
  274. worker.join()
  275. for q in self.trans_data_queues:
  276. q.cancel_join_thread()
  277. q.close()
  278. for q in self.task_queues:
  279. q.cancel_join_thread()
  280. q.close()
  281. self.batch_queue.cancel_join_thread()
  282. self.batch_queue.close()
  283. def __del__(self):
  284. if self.__initialized:
  285. self._shutdown()
  286. class _BaseStreamDataLoaderIter:
  287. def __init__(self, loader):
  288. self.dataset = loader.dataset
  289. self.sampler = loader.sampler
  290. self.transform = loader.transform
  291. self.collator = loader.collator
  292. self.num_workers = loader.num_workers
  293. self.timeout = loader.timeout
  294. self.post_process = self.dataset.post_process
  295. def _get_next_batch(self):
  296. raise NotImplementedError
  297. def __iter__(self):
  298. return self
  299. def __next__(self):
  300. return self.post_process(self._get_next_batch())
  301. class _SerialStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  302. def __init__(self, loader):
  303. super().__init__(loader)
  304. self.dataset_iter = iter(self.dataset)
  305. def _get_next_batch(self):
  306. ret = []
  307. start_time = time.time()
  308. while len(ret) != self.sampler.batch_size:
  309. waited_time = time.time() - start_time
  310. if self.timeout > 0 and waited_time > self.timeout:
  311. raise RuntimeError("get_next_batch timeout!")
  312. item = next(self.dataset_iter)
  313. for idx in range(len(item[0])):
  314. trans_item = self.transform.apply(tuple(e[idx] for e in item))
  315. ret.append(trans_item)
  316. if len(ret) == self.sampler.batch_size:
  317. break
  318. return self.collator.apply(ret)
  319. class _ParallelStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  320. __initialized = False
  321. def __init__(self, loader):
  322. super().__init__(loader)
  323. self.shutdown_flag = multiprocessing.Value("i", 0)
  324. # shared-memory queue implemented by pyarrow plasma store
  325. from ._queue import PlasmaShmQueue
  326. self.batch_queue = PlasmaShmQueue(maxsize=2)
  327. self.workers = []
  328. self.worker_queues = [
  329. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  330. ]
  331. for worker_id in range(self.num_workers):
  332. worker = multiprocessing.Process(
  333. target=self._gen_data, args=(worker_id,), daemon=True
  334. )
  335. worker.start()
  336. self.workers.append(worker)
  337. self.collator_worker = multiprocessing.Process(
  338. target=self._gen_batch, daemon=True
  339. )
  340. self.collator_worker.start()
  341. self.__initialized = True
  342. def _gen_data(self, worker_id):
  343. dataset_iter = iter(self.dataset)
  344. while True:
  345. if self.shutdown_flag.value == 1:
  346. break
  347. item = next(dataset_iter)
  348. for idx in range(len(item[0])):
  349. trans_item = self.transform.apply(tuple(e[idx] for e in item))
  350. while True:
  351. try:
  352. self.worker_queues[worker_id].put(trans_item)
  353. break
  354. except queue.Full:
  355. if self.shutdown_flag.value == 1:
  356. break
  357. logger.debug("batch part queue is full")
  358. def _gen_batch(self):
  359. cnt = -1
  360. trans_items = []
  361. while True:
  362. if self.shutdown_flag.value == 1:
  363. break
  364. cnt += 1
  365. queue_id = cnt % self.num_workers
  366. try:
  367. trans_item = self.worker_queues[queue_id].get(
  368. timeout=MP_QUEUE_GET_TIMEOUT
  369. )
  370. except queue.Empty:
  371. continue
  372. trans_items.append(trans_item)
  373. if len(trans_items) == self.sampler.batch_size:
  374. batch_data = self.collator.apply(trans_items)
  375. while True:
  376. try:
  377. self.batch_queue.put(batch_data, timeout=1)
  378. break
  379. except queue.Full:
  380. if self.shutdown_flag.value == 1:
  381. break
  382. logger.debug("batch queue is full")
  383. trans_items = []
  384. def _check_workers(self):
  385. if not self.collator_worker.is_alive():
  386. exitcode = self.collator_worker.exitcode
  387. if exitcode != 0:
  388. raise RuntimeError("collator worker died. {}".format(exitcode))
  389. for worker_id, worker in enumerate(self.workers):
  390. if not worker.is_alive():
  391. exitcode = worker.exitcode
  392. if exitcode != 0:
  393. raise RuntimeError(
  394. "worker: {} died. {}".format(worker_id, exitcode)
  395. )
  396. def _try_get_next_batch(self):
  397. start_time = time.time()
  398. while True:
  399. self._check_workers()
  400. try:
  401. return self.batch_queue.get(timeout=1)
  402. except queue.Empty:
  403. logger.debug("batch queue empty!")
  404. waited_time = time.time() - start_time
  405. if self.timeout > 0 and waited_time > self.timeout:
  406. raise RuntimeError("get_next_batch timeout!")
  407. def _get_next_batch(self):
  408. batch_data = self._try_get_next_batch()
  409. return batch_data
  410. def _shutdown(self):
  411. with self.shutdown_flag.get_lock():
  412. self.shutdown_flag.value = 1
  413. if self.collator_worker.is_alive():
  414. self.collator_worker.terminate()
  415. self.collator_worker.join()
  416. for worker in self.workers:
  417. if worker.is_alive():
  418. worker.terminate()
  419. worker.join()
  420. for q in self.worker_queues:
  421. q.cancel_join_thread()
  422. q.close()
  423. self.batch_queue.cancel_join_thread()
  424. self.batch_queue.close()
  425. def __del__(self):
  426. if self.__initialized:
  427. self._shutdown()
  428. def _task_feeding_loop(
  429. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  430. ):
  431. # Feed the indices into the task queues
  432. while True:
  433. if shutdown_flag.value == 1:
  434. break
  435. batch_idx = feed_batch_idx.value
  436. try:
  437. indices = next(indices_iter)
  438. except StopIteration:
  439. break
  440. if divide:
  441. # make sure all task_queues is ready for put
  442. while any([q.full() for q in task_queues]):
  443. if shutdown_flag.value == 1:
  444. return
  445. # divide into small pieces, feed to different workers.
  446. sub_num = math.ceil(len(indices) / num_workers)
  447. for worker_id in range(num_workers):
  448. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  449. task_queues[worker_id].put((batch_idx, sub_indices))
  450. else:
  451. # distribute tasks to different workers uniformly.
  452. target_id = batch_idx % num_workers
  453. while task_queues[target_id].full():
  454. if shutdown_flag.value == 1:
  455. return
  456. task_queues[target_id].put((batch_idx, indices))
  457. with feed_batch_idx.get_lock():
  458. feed_batch_idx.value += 1
  459. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  460. # Get dataset items and do the transform
  461. random.seed(seed)
  462. np.random.seed(seed)
  463. while True:
  464. if shutdown_flag.value == 1:
  465. break
  466. try:
  467. batch_idx, indices = task_queue.get(timeout=MP_QUEUE_GET_TIMEOUT)
  468. except queue.Empty:
  469. continue
  470. if len(indices) > 0:
  471. items = [dataset[idx] for idx in indices]
  472. trans_items = transform.apply_batch(items)
  473. else:
  474. # in case of incomplete last batch
  475. trans_items = ()
  476. while True:
  477. try:
  478. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  479. break
  480. except queue.Full:
  481. if shutdown_flag.value == 1:
  482. break
  483. logger.debug("batch part queue is full!")
  484. def _data_gathering_loop(
  485. trans_data_queues,
  486. batch_queue,
  487. collator,
  488. length,
  489. num_workers,
  490. shutdown_flag,
  491. target_idx,
  492. ):
  493. # Gathering the small pieces of batch data into full batch data
  494. while True:
  495. if shutdown_flag.value == 1:
  496. break
  497. target_batch_idx = target_idx.value
  498. if target_batch_idx >= length:
  499. break
  500. full_trans_items = []
  501. for worker_id in range(num_workers):
  502. while True:
  503. try:
  504. batch_idx, trans_items = trans_data_queues[worker_id].get(
  505. timeout=MP_QUEUE_GET_TIMEOUT
  506. )
  507. break
  508. except queue.Empty:
  509. if shutdown_flag.value == 1:
  510. break
  511. logger.debug(
  512. "worker:{} data queue get timeout! target batch idx:{}".format(
  513. worker_id, target_batch_idx
  514. )
  515. )
  516. if batch_idx != target_batch_idx:
  517. raise RuntimeError(
  518. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  519. worker_id
  520. )
  521. )
  522. else:
  523. full_trans_items.extend(trans_items)
  524. # Merge different parts into a batch.
  525. full_batch = collator.apply(full_trans_items)
  526. while True:
  527. try:
  528. batch_queue.put(full_batch, timeout=1)
  529. break
  530. except queue.Full:
  531. if shutdown_flag.value == 1:
  532. break
  533. logger.debug("batch queue is full!")
  534. with target_idx.get_lock():
  535. target_idx.value += 1
  536. batch_queue.disconnect_client()
  537. def _data_selecting_loop(
  538. trans_data_queues,
  539. batch_queue,
  540. collator,
  541. length,
  542. num_workers,
  543. shutdown_flag,
  544. target_idx,
  545. ):
  546. # Make sure that batch is generated exactly with the same order as generated indices
  547. while True:
  548. if shutdown_flag.value == 1:
  549. break
  550. target_batch_idx = target_idx.value
  551. if target_batch_idx >= length:
  552. break
  553. target_worker_id = target_batch_idx % num_workers
  554. while True:
  555. try:
  556. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  557. timeout=MP_QUEUE_GET_TIMEOUT
  558. )
  559. batch_data = collator.apply(trans_items)
  560. break
  561. except queue.Empty:
  562. if shutdown_flag.value == 1:
  563. break
  564. logger.debug(
  565. "worker:{} data queue get timeout! target batch idx:{}".format(
  566. target_worker_id, target_batch_idx
  567. )
  568. )
  569. if batch_idx != target_batch_idx:
  570. raise RuntimeError(
  571. "batch_idx {} mismatch the target_batch_idx {}".format(
  572. batch_idx, target_batch_idx
  573. )
  574. )
  575. while True:
  576. try:
  577. batch_queue.put(batch_data, timeout=1)
  578. break
  579. except queue.Full:
  580. if shutdown_flag.value == 1:
  581. break
  582. logger.debug("batch queue is full!")
  583. with target_idx.get_lock():
  584. target_idx.value += 1
  585. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台