| @@ -20,7 +20,7 @@ class GradManager: | |||
| the forward operations start and when all resources should be released. A typical usage of | |||
| GradManager is as follows: | |||
| .. codeblock:: | |||
| .. code-block:: | |||
| gm = GradManager() | |||
| gm.attach(model.parameters()) | |||
| @@ -32,7 +32,7 @@ class GradManager: | |||
| You can also use `record()` and `release()` method instead of `with` context: | |||
| .. codeblock:: | |||
| .. code-block:: | |||
| gm = GradManager() | |||
| gm.attach(model.parameters()) | |||
| @@ -50,7 +50,7 @@ class GradManager: | |||
| processes. Users will finally get the averaged gradients if an "AllReduce" | |||
| callback is registered as follows: | |||
| .. codeblock:: | |||
| .. code-block:: | |||
| import megengine.distributed as dist | |||
| @@ -71,7 +71,7 @@ class GradManager: | |||
| r"""Registers parameters that gradients should be calculated with respect to. | |||
| Callback Functions should have a signature like this: | |||
| .. codeblock:: | |||
| .. code-block:: | |||
| def cb(param: Tensor, grad: Tensor) -> Tensor: | |||
| # do something | |||
| @@ -50,8 +50,8 @@ class Function: | |||
| """ | |||
| Applies operations to ``inputs`` and returns results. It must be overriden by all subclasses. | |||
| :param input: Input tensors. | |||
| :return: A tuple of Tensor or a single Tensor. | |||
| :param input: input tensors. | |||
| :return: a tuple of Tensor or a single Tensor. | |||
| .. note:: | |||
| @@ -64,7 +64,7 @@ class Function: | |||
| """ | |||
| Compute the gradient of the forward function. It must be overriden by all subclasses. | |||
| :param output_grads: gradients of outputs that are returned by :meth:`~.function.Function.forward` | |||
| :param output_grads: gradients of outputs that are returned by :meth:`~.function.Function.forward`. | |||
| .. note:: | |||
| @@ -34,14 +34,14 @@ default_collate_err_msg_format = ( | |||
| class Collator: | |||
| r""" | |||
| Used for merge a list of samples to form a mini-batch of Tenor(s). Used when using batched loading from a dataset. | |||
| modified from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py | |||
| Used for merging a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a dataset. | |||
| Modified from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py | |||
| """ | |||
| def apply(self, inputs): | |||
| """ | |||
| input : sequence_N(tuple(CHW, C, CK)) | |||
| output : tuple(NCHW, NC, NCK) | |||
| :param input: sequence_N(tuple(CHW, C, CK)). | |||
| :return: tuple(NCHW, NC, NCK). | |||
| """ | |||
| elem = inputs[0] | |||
| elem_type = type(elem) | |||
| @@ -43,7 +43,7 @@ class DataLoader: | |||
| ): | |||
| r"""Provides a convenient way to iterate on a given dataset. | |||
| `DataLoader` combines a dataset with sampler, transform and collator, | |||
| `DataLoader` combines a dataset with `sampler`, `transform` and `collator`, | |||
| make it flexible to get minibatch continually from a dataset. | |||
| :type dataset: Dataset | |||
| @@ -53,21 +53,21 @@ class DataLoader: | |||
| If specified, :attr:`shuffle` must be ``False``. | |||
| :type transform: Transform | |||
| :param transform: defined the transforming strategy for a sampled batch. | |||
| (default: ``None``) | |||
| Default: None | |||
| :type collator: Collator | |||
| :param collator: defined the merging strategy for a transformed batch. | |||
| (default: ``None``) | |||
| Default: None | |||
| :type num_workers: int | |||
| :param num_workers: the number of sub-process to load, transform and collate | |||
| the batch. ``0`` means using single-process. (default: ``0``) | |||
| the batch. ``0`` means using single-process. Default: 0 | |||
| :type timeout: int | |||
| :param timeout: if positive, means the timeout value(second) for collecting a | |||
| batch from workers. (default: 0) | |||
| batch from workers. Default: 0 | |||
| :type divide: bool | |||
| :param divide: define the paralleling strategy in multi-processing mode. | |||
| ``True`` means one batch is divided into :attr:`num_workers` pieces, and | |||
| the workers will process these pieces parallelly. ``False`` means | |||
| different sub-process will process different batch. (default: ``False``) | |||
| different sub-process will process different batch. Default: False | |||
| """ | |||
| @@ -12,7 +12,7 @@ from typing import Tuple | |||
| class Dataset(ABC): | |||
| r""" | |||
| An abstract class for all Datasets | |||
| An abstract class for all Datasets. | |||
| """ | |||
| @abstractmethod | |||
| @@ -22,8 +22,8 @@ class Dataset(ABC): | |||
| class MapDataset(Dataset): | |||
| r""" | |||
| An abstract class for map data | |||
| __getitem__ and __len__ method are aditionally needed | |||
| An abstract class for map data. | |||
| __getitem__ and __len__ method are aditionally needed. | |||
| """ | |||
| @abstractmethod | |||
| @@ -41,8 +41,8 @@ class MapDataset(Dataset): | |||
| class StreamDataset(Dataset): | |||
| r""" | |||
| An abstract class for stream data | |||
| __iter__ method is aditionally needed | |||
| An abstract class for stream data. | |||
| __iter__ method is aditionally needed. | |||
| """ | |||
| @abstractmethod | |||
| @@ -21,7 +21,7 @@ logger = get_logger(__name__) | |||
| class CIFAR10(VisionDataset): | |||
| r""" ``Dataset`` for CIFAR10 meta data | |||
| r""" ``Dataset`` for CIFAR10 meta data. | |||
| """ | |||
| url_path = "http://www.cs.utoronto.ca/~kriz/" | |||
| @@ -30,19 +30,18 @@ class ImageFolder(VisionDataset): | |||
| r""" | |||
| ImageFolder is a class for loading image data and labels from a organized folder. | |||
| the folder is expected to be organized as followed | |||
| root/cls/xxx.img_ext | |||
| The folder is expected to be organized as followed: root/cls/xxx.img_ext | |||
| labels are indices of sorted classes in the root directory | |||
| Labels are indices of sorted classes in the root directory. | |||
| :param root: root directory of an image folder | |||
| :param root: root directory of an image folder. | |||
| :param loader: a function used to load image from path, | |||
| if ``None``, default function that loads | |||
| images with PILwill be called | |||
| images with PIL will be called. | |||
| :param check_valid_func: a function used to check if files in folder are | |||
| expected image files, if ``None``, default function | |||
| that checks file extensions will be called | |||
| :param class_name: if ``True``, return class name instead of class index | |||
| that checks file extensions will be called. | |||
| :param class_name: if ``True``, return class name instead of class index. | |||
| """ | |||
| super().__init__(root, order=("image", "image_category")) | |||
| @@ -31,7 +31,7 @@ logger = get_logger(__name__) | |||
| class ImageNet(ImageFolder): | |||
| r""" | |||
| Load ImageNet from raw files or folder, expected folder looks like | |||
| Load ImageNet from raw files or folder. Expected folder looks like: | |||
| .. code-block:: bash | |||
| @@ -60,25 +60,25 @@ class ImageNet(ImageFolder): | |||
| def __init__(self, root: str = None, train: bool = True, **kwargs): | |||
| r""" | |||
| initialization: | |||
| Initialization: | |||
| * if ``root`` contains ``self.target_folder`` depent on ``train``: | |||
| * if ``root`` contains ``self.target_folder`` depending on ``train``: | |||
| * initialize ImageFolder with target_folder | |||
| * initialize ImageFolder with target_folder. | |||
| * else: | |||
| * if all raw files are in ``root``: | |||
| * parse ``self.target_folder`` from raw files | |||
| * initialize ImageFolder with ``self.target_folder`` | |||
| * parse ``self.target_folder`` from raw files. | |||
| * initialize ImageFolder with ``self.target_folder``. | |||
| * else: | |||
| * raise error | |||
| * raise error. | |||
| :param root: root directory of imagenet data, if root is ``None``, used default_dataset_root | |||
| :param train: if ``True``, load the train split, otherwise load the validation split | |||
| :param root: root directory of imagenet data, if root is ``None``, use default_dataset_root. | |||
| :param train: if ``True``, load the train split, otherwise load the validation split. | |||
| """ | |||
| # process the root path | |||
| @@ -22,12 +22,12 @@ logger = get_logger(__name__) | |||
| class MNIST(VisionDataset): | |||
| r""" ``Dataset`` for MNIST meta data | |||
| r""" ``Dataset`` for MNIST meta data. | |||
| """ | |||
| url_path = "http://yann.lecun.com/exdb/mnist/" | |||
| """ | |||
| url prefix for downloading raw file | |||
| Url prefix for downloading raw file. | |||
| """ | |||
| raw_file_name = [ | |||
| "train-images-idx3-ubyte.gz", | |||
| @@ -36,7 +36,7 @@ class MNIST(VisionDataset): | |||
| "t10k-labels-idx1-ubyte.gz", | |||
| ] | |||
| """ | |||
| raw file names of both training set and test set (10k) | |||
| Raw file names of both training set and test set (10k). | |||
| """ | |||
| raw_file_md5 = [ | |||
| "f68b3c2dcbeaaa9fbdd348bbdeb94873", | |||
| @@ -45,7 +45,7 @@ class MNIST(VisionDataset): | |||
| "ec29112dd5afa0611ce80d1b7f02629c", | |||
| ] | |||
| """ | |||
| md5 for checking raw files | |||
| Md5 for checking raw files. | |||
| """ | |||
| def __init__( | |||
| @@ -57,10 +57,10 @@ class MNIST(VisionDataset): | |||
| ): | |||
| r""" | |||
| :param root: path for mnist dataset downloading or loading, if ``None``, | |||
| set ``root`` to the ``_default_root`` | |||
| :param train: if ``True``, loading trainingset, else loading test set | |||
| set ``root`` to the ``_default_root``. | |||
| :param train: if ``True``, loading trainingset, else loading test set. | |||
| :param download: if raw files do not exists and download sets to ``True``, | |||
| download raw files and process, otherwise raise ValueError, default is True | |||
| download raw files and process, otherwise raise ValueError, default is True. | |||
| """ | |||
| super().__init__(root, order=("image", "image_category")) | |||
| @@ -28,25 +28,25 @@ class Sampler(ABC): | |||
| seed=None, | |||
| ): | |||
| r""" | |||
| An abstract class for all sampler | |||
| An abstract class for all sampler. | |||
| :type dataset: `dataset` | |||
| :param dataset: dataset to sample from | |||
| :param dataset: dataset to sample from. | |||
| :type batch_size: positive integer | |||
| :param batch_size: batch size for batch method | |||
| :param batch_size: batch size for batch method. | |||
| :type drop_last: bool | |||
| :param drop_last: set ``True`` to drop the last incomplete batch, | |||
| if the dataset size is not divisible by the batch size. If ``False`` and | |||
| the size of dataset is not divisible by the batch_size, then the last batch will | |||
| be smaller. (default: ``False``) | |||
| be smaller. Default: False | |||
| :type num_samples: positive integer | |||
| :param num_samples: number of samples assigned to one rank | |||
| :param num_samples: number of samples assigned to one rank. | |||
| :type world_size: positive integer | |||
| :param world_size: number of ranks | |||
| :param world_size: number of ranks. | |||
| :type rank: non-negative integer within 0 and world_size | |||
| :param rank: rank id, non-negative interger within 0 and ``world_size`` | |||
| :param rank: rank id, non-negative interger within 0 and ``world_size``. | |||
| :type seed: non-negative integer | |||
| :param seed: seed for random operators | |||
| :param seed: seed for random operators. | |||
| """ | |||
| if ( | |||
| not isinstance(batch_size, int) | |||
| @@ -103,15 +103,15 @@ class Sampler(ABC): | |||
| def sample(self): | |||
| """ | |||
| return a list contains all sample indices | |||
| Return a list contains all sample indices. | |||
| """ | |||
| raise NotImplementedError | |||
| def scatter(self, indices) -> List: | |||
| r""" | |||
| scatter method is used for splitting indices into subset, each subset | |||
| Scatter method is used for splitting indices into subset, each subset | |||
| will be assigned to a rank. Indices are evenly splitted by default. | |||
| If customized indices assignment method is needed, please rewrite this method | |||
| If customized indices assignment method is needed, please rewrite this method. | |||
| """ | |||
| total_size = self.num_samples * self.world_size | |||
| @@ -127,7 +127,7 @@ class Sampler(ABC): | |||
| def batch(self) -> Iterator[List[Any]]: | |||
| r""" | |||
| batch method provides a batch indices generator | |||
| Batch method provides a batch indices generator. | |||
| """ | |||
| indices = list(self.sample()) | |||
| @@ -156,7 +156,7 @@ class SequentialSampler(Sampler): | |||
| rank=None, | |||
| ): | |||
| r""" | |||
| Sample elements sequentially | |||
| Sample elements sequentially. | |||
| """ | |||
| super().__init__(dataset, batch_size, drop_last, None, world_size, rank) | |||
| if indices is not None and not isinstance(indices, collections.abc.Sequence): | |||
| @@ -168,7 +168,7 @@ class SequentialSampler(Sampler): | |||
| def sample(self) -> Iterator[Any]: | |||
| r""" | |||
| return a generator | |||
| Return a generator. | |||
| """ | |||
| if self.indices is None: | |||
| return iter(range(len(self.dataset))) | |||
| @@ -188,7 +188,7 @@ class RandomSampler(Sampler): | |||
| seed=None, | |||
| ): | |||
| r""" | |||
| Sample elements randomly without replacement | |||
| Sample elements randomly without replacement. | |||
| """ | |||
| super().__init__(dataset, batch_size, drop_last, None, world_size, rank, seed) | |||
| if indices is not None and not isinstance(indices, collections.abc.Sequence): | |||
| @@ -218,10 +218,10 @@ class ReplacementSampler(Sampler): | |||
| seed=None, | |||
| ): | |||
| r""" | |||
| Sample elements randomly with replacement | |||
| Sample elements randomly with replacement. | |||
| :type weights: List | |||
| :param weights: weights for sampling indices, it could be unnormalized weights | |||
| :param weights: weights for sampling indices, it could be unnormalized weights. | |||
| """ | |||
| super().__init__( | |||
| dataset, batch_size, drop_last, num_samples, world_size, rank, seed | |||
| @@ -250,7 +250,7 @@ class ReplacementSampler(Sampler): | |||
| class Infinite(Sampler): | |||
| r"""Infinite Sampler warper for basic sampler""" | |||
| r"""Infinite Sampler warper for basic sampler.""" | |||
| def sample(self): | |||
| raise NotImplementedError("sample method not supported in Infinite") | |||
| @@ -12,7 +12,7 @@ from typing import Sequence, Tuple | |||
| class Transform(ABC): | |||
| """ | |||
| rewrite apply method in subclass | |||
| Rewrite apply method in subclass. | |||
| """ | |||
| def apply_batch(self, inputs: Sequence[Tuple]): | |||
| @@ -15,7 +15,7 @@ import numpy as np | |||
| def wrap_keepdims(func): | |||
| """Wraper to keep the dimension of input images unchanged""" | |||
| """Wraper to keep the dimension of input images unchanged.""" | |||
| @functools.wraps(func) | |||
| def wrapper(image, *args, **kwargs): | |||
| @@ -34,10 +34,10 @@ def wrap_keepdims(func): | |||
| @wrap_keepdims | |||
| def to_gray(image): | |||
| r""" | |||
| Change BGR format image's color space to gray | |||
| Change BGR format image's color space to gray. | |||
| :param image: Input BGR format image, with (H, W, C) shape | |||
| :return: Gray format image, with (H, W, C) shape | |||
| :param image: input BGR format image, with `(H, W, C)` shape. | |||
| :return: gray format image, with `(H, W, C)` shape. | |||
| """ | |||
| return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |||
| @@ -45,10 +45,10 @@ def to_gray(image): | |||
| @wrap_keepdims | |||
| def to_bgr(image): | |||
| r""" | |||
| Change gray format image's color space to BGR | |||
| Change gray format image's color space to BGR. | |||
| :param image: input Gray format image, with (H, W, C) shape | |||
| :return: BGR format image, with (H, W, C) shape | |||
| :param image: input Gray format image, with `(H, W, C)` shape. | |||
| :return: BGR format image, with `(H, W, C)` shape. | |||
| """ | |||
| return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |||
| @@ -56,18 +56,18 @@ def to_bgr(image): | |||
| @wrap_keepdims | |||
| def pad(input, size, value): | |||
| r""" | |||
| Pad input data with *value* and given *size* | |||
| Pad input data with *value* and given *size*. | |||
| :param input: Input data, with (H, W, C) shape | |||
| :param size: Padding size of input data, it could be integer or sequence. | |||
| If it's an integer, the input data will be padded in four directions. | |||
| If it's a sequence contains two integer, the bottom and right side | |||
| :param input: input data, with `(H, W, C)` shape. | |||
| :param size: padding size of input data, it could be integer or sequence. | |||
| If it is an integer, the input data will be padded in four directions. | |||
| If it is a sequence contains two integer, the bottom and right side | |||
| of input data will be padded. | |||
| If it's a sequence contains four integer, the top, bottom, left, right | |||
| If it is a sequence contains four integer, the top, bottom, left, right | |||
| side of input data will be padded with given size. | |||
| :param value: Padding value of data, could be a sequence of int or float. | |||
| if it's float value, the dtype of image will be casted to float32 also. | |||
| :return: Padded image | |||
| :param value: padding value of data, could be a sequence of int or float. | |||
| If it is float value, the dtype of image will be casted to float32 also. | |||
| :return: padded image. | |||
| """ | |||
| if isinstance(size, int): | |||
| size = (size, size, size, size) | |||
| @@ -81,14 +81,18 @@ def pad(input, size, value): | |||
| @wrap_keepdims | |||
| def flip(image, flipCode): | |||
| r""" | |||
| Accordding to the flipCode (the type of flip), flip the input image | |||
| Accordding to the flipCode (the type of flip), flip the input image. | |||
| :param image: Input image, with (H, W, C) shape | |||
| :param image: input image, with `(H, W, C)` shape. | |||
| :param flipCode: code that indicates the type of flip. | |||
| 1 : Flip horizontally | |||
| 0 : Flip vertically | |||
| -1 : Flip horizontally and vertically | |||
| :return: BGR format image, with (H, W, C) shape | |||
| * 1 : Flip horizontally | |||
| * 0 : Flip vertically | |||
| * -1: Flip horizontally and vertically | |||
| :return: BGR format image, with `(H, W, C)` shape. | |||
| """ | |||
| return cv2.flip(image, flipCode=flipCode) | |||
| @@ -96,12 +100,12 @@ def flip(image, flipCode): | |||
| @wrap_keepdims | |||
| def resize(input, size, interpolation=cv2.INTER_LINEAR): | |||
| r""" | |||
| resize the input data to given size | |||
| Resize the input data to given size. | |||
| :param input: Input data, could be image or masks, with (H, W, C) shape | |||
| :param size: Target size of input data, with (height, width) shape. | |||
| :param interpolation: Interpolation method. | |||
| :return: Resized data, with (H, W, C) shape | |||
| :param input: input data, could be image or masks, with `(H, W, C)` shape. | |||
| :param size: target size of input data, with (height, width) shape. | |||
| :param interpolation: interpolation method. | |||
| :return: resized data, with `(H, W, C)` shape. | |||
| """ | |||
| if len(size) != 2: | |||
| raise ValueError("resize needs (h, w), but got {}".format(size)) | |||
| @@ -44,26 +44,26 @@ __all__ = [ | |||
| class VisionTransform(Transform): | |||
| r""" | |||
| Base class of all transforms used in computer vision. | |||
| calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() | |||
| Calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() | |||
| method. If you want to implement a self-defined transform method for image, | |||
| rewrite _apply_image method in subclass. | |||
| :param order: Input type order. Input is a tuple contains different structures, | |||
| :param order: input type order. Input is a tuple containing different structures, | |||
| order is used to specify the order of structures. For example, if your input | |||
| is (image, boxes) type, then the order should be ("image", "boxes"). | |||
| Current available strings & data type are describe below: | |||
| is (image, boxes) type, then the ``order`` should be ("image", "boxes"). | |||
| Current available strings and data type are describe below: | |||
| * "image": input image, with shape of (H, W, C) | |||
| * "coords": coordinates, with shape of (N, 2) | |||
| * "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, | |||
| * "image": input image, with shape of `(H, W, C)`. | |||
| * "coords": coordinates, with shape of `(N, 2)`. | |||
| * "boxes": bounding boxes, with shape of `(N, 4)`, "xyxy" format, | |||
| the 1st "xy" represents top left point of a box, | |||
| the 2nd "xy" represents right bottom point. | |||
| * "mask": map used for segmentation, with shape of (H, W, 1) | |||
| * "keypoints": keypoints with shape of (N, K, 3), N for number of instances, | |||
| * "mask": map used for segmentation, with shape of `(H, W, 1)`. | |||
| * "keypoints": keypoints with shape of `(N, K, 3)`, N for number of instances, | |||
| and K for number of keypoints in one instance. The first two dimensions | |||
| of last axis is coordinate of keypoints and the the 3rd dimension is | |||
| the label of keypoints. | |||
| * "polygons": A sequence contains numpy array, its length is number of instances. | |||
| * "polygons": a sequence containing numpy arrays, its length is the number of instances. | |||
| Each numpy array represents polygon coordinate of one instance. | |||
| * "category": categories for some data type. For example, "image_category" | |||
| means category of the input image and "boxes_category" means categories of | |||
| @@ -94,11 +94,11 @@ class VisionTransform(Transform): | |||
| self.order = order | |||
| def apply_batch(self, inputs: Sequence[Tuple]): | |||
| r"""Apply transform on batch input data""" | |||
| r"""Apply transform on batch input data.""" | |||
| return tuple(self.apply(input) for input in inputs) | |||
| def apply(self, input: Tuple): | |||
| r"""Apply transform on single input data""" | |||
| r"""Apply transform on single input data.""" | |||
| if not isinstance(input, tuple): | |||
| input = (input,) | |||
| @@ -156,10 +156,10 @@ class VisionTransform(Transform): | |||
| class ToMode(VisionTransform): | |||
| r"""Change input data to a target mode. | |||
| For example, most transforms use HWC mode image, | |||
| while the Neural Network might use CHW mode input tensor | |||
| while the neural network might use CHW mode input tensor. | |||
| :param mode: Output mode of input. Use "CHW" mode by default. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param mode: output mode of input. Default: "CHW" | |||
| :param order: the same with :class:`VisionTransform` | |||
| """ | |||
| def __init__(self, mode="CHW", *, order=None): | |||
| @@ -185,14 +185,14 @@ class Compose(VisionTransform): | |||
| r""" | |||
| Composes several transforms together. | |||
| :param transforms: List of :class:`VisionTransform` to compose. | |||
| :param batch_compose: Whether use shuffle_indices for batch data or not. | |||
| :param transforms: list of :class:`VisionTransform` to compose. | |||
| :param batch_compose: whether use shuffle_indices for batch data or not. | |||
| If True, use original input sequence. | |||
| Otherwise, the shuffle_indices will be used for transforms. | |||
| :param shuffle_indices: Indices used for random shuffle, start at 1. | |||
| :param shuffle_indices: indices used for random shuffle, start at 1. | |||
| For example, if shuffle_indices is [(1, 3), (2, 4)], then the 1st and 3rd transform | |||
| will be random shuffled, the 2nd and 4th transform will also be shuffled. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform` | |||
| Examples: | |||
| @@ -264,8 +264,8 @@ class TorchTransformCompose(VisionTransform): | |||
| some transforms with tensor in torchvision are not supported, | |||
| such as Normalize and ToTensor in torchvision. | |||
| :param transforms: The same with ``Compose`` | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param transforms: the same with ``Compose``. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, transforms, *, order=None): | |||
| @@ -303,16 +303,16 @@ class TorchTransformCompose(VisionTransform): | |||
| class Pad(VisionTransform): | |||
| r"""Pad the input data. | |||
| :param size: Padding size of input image, it could be integer or sequence. | |||
| If it's an integer, the input image will be padded in four directions. | |||
| If it's a sequence contains two integer, the bottom and right side | |||
| :param size: padding size of input image, it could be integer or sequence. | |||
| If it is an integer, the input image will be padded in four directions. | |||
| If it is a sequence containing two integers, the bottom and right side | |||
| of image will be padded. | |||
| If it's a sequence contains four integer, the top, bottom, left, right | |||
| If it is a sequence containing four integers, the top, bottom, left, right | |||
| side of image will be padded with given size. | |||
| :param value: Padding value of image, could be a sequence of int or float. | |||
| if it's float value, the dtype of image will be casted to float32 also. | |||
| :param mask_value: Padding value of segmentation map. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param value: padding value of image, could be a sequence of int or float. | |||
| if it is float value, the dtype of image will be casted to float32 also. | |||
| :param mask_value: padding value of segmentation map. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, size=0, value=0, mask_value=0, *, order=None): | |||
| @@ -350,15 +350,15 @@ class Pad(VisionTransform): | |||
| class Resize(VisionTransform): | |||
| r"""Resize the input data. | |||
| :param output_size: Target size of image, with (height, width) shape. | |||
| :param interpolation: Interpolation method. All methods are listed below: | |||
| :param output_size: target size of image, with (height, width) shape. | |||
| :param interpolation: interpolation method. All methods are listed below: | |||
| * cv2.INTER_NEAREST – a nearest-neighbor interpolation. | |||
| * cv2.INTER_LINEAR – a bilinear interpolation (used by default). | |||
| * cv2.INTER_AREA – resampling using pixel area relation. | |||
| * cv2.INTER_CUBIC – a bicubic interpolation over 4×4 pixel neighborhood. | |||
| * cv2.INTER_LANCZOS4 – a Lanczos interpolation over 8×8 pixel neighborhood. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, output_size, interpolation=cv2.INTER_LINEAR, *, order=None): | |||
| @@ -476,8 +476,8 @@ class ShortestEdgeResize(VisionTransform): | |||
| class RandomResize(VisionTransform): | |||
| r"""Resize the input data randomly. | |||
| :param scale_range: . | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param scale_range: range of scaling. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, scale_range, interpolation=cv2.INTER_LINEAR, *, order=None): | |||
| @@ -519,13 +519,13 @@ class RandomResize(VisionTransform): | |||
| class RandomCrop(VisionTransform): | |||
| r"""Crop the input data randomly. Before applying the crop transform, | |||
| pad the image first. And if target size is still bigger than the size of | |||
| pad the image first. If target size is still bigger than the size of | |||
| padded image, pad the image size to target size. | |||
| :param output_size: Target size of output image, with (height, width) shape. | |||
| :param padding_size: The same with `size` in ``Pad`` | |||
| :param padding_value: The same with `value` in ``Pad`` | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param output_size: target size of output image, with (height, width) shape. | |||
| :param padding_size: the same with `size` in ``Pad``. | |||
| :param padding_value: the same with `value` in ``Pad``. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__( | |||
| @@ -580,10 +580,10 @@ class RandomResizedCrop(VisionTransform): | |||
| aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. | |||
| After applying crop transfrom, the input data will be resized to given size. | |||
| :param output_size: Target size of output image, with (height, width) shape. | |||
| :param scale_range: Range of size of the origin size cropped. Default: (0.08, 1.0) | |||
| :param ratio_range: Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param output_size: target size of output image, with (height, width) shape. | |||
| :param scale_range: range of size of the origin size cropped. Default: (0.08, 1.0) | |||
| :param ratio_range: range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__( | |||
| @@ -666,8 +666,8 @@ class RandomResizedCrop(VisionTransform): | |||
| class CenterCrop(VisionTransform): | |||
| r"""Crops the given the input data at the center. | |||
| :param output_size: Target size of output image, with (height, width) shape. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param output_size: target size of output image, with (height, width) shape. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, output_size, *, order=None): | |||
| @@ -710,7 +710,7 @@ class RandomHorizontalFlip(VisionTransform): | |||
| r"""Horizontally flip the input data randomly with a given probability. | |||
| :param p: probability of the input data being flipped. Default: 0.5 | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, prob: float = 0.5, *, order=None): | |||
| @@ -742,7 +742,7 @@ class RandomVerticalFlip(VisionTransform): | |||
| r"""Vertically flip the input data randomly with a given probability. | |||
| :param p: probability of the input data being flipped. Default: 0.5 | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, prob: float = 0.5, *, order=None): | |||
| @@ -776,9 +776,9 @@ class Normalize(VisionTransform): | |||
| this transform will normalize each channel of the input data. | |||
| ``output[channel] = (input[channel] - mean[channel]) / std[channel]`` | |||
| :param mean: Sequence of means for each channel. | |||
| :param std: Sequence of standard deviations for each channel. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param mean: sequence of means for each channel. | |||
| :param std: sequence of standard deviations for each channel. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, mean=0.0, std=1.0, *, order=None): | |||
| @@ -802,7 +802,7 @@ class GaussianNoise(VisionTransform): | |||
| :param mean: Gaussian mean used to generate noise. | |||
| :param std: Gaussian standard deviation used to generate noise. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform` | |||
| """ | |||
| def __init__(self, mean=0.0, std=1.0, *, order=None): | |||
| @@ -826,9 +826,9 @@ class GaussianNoise(VisionTransform): | |||
| class BrightnessTransform(VisionTransform): | |||
| r"""Adjust brightness of the input data. | |||
| :param value: How much to adjust the brightness. Can be any | |||
| non negative number. 0 gives the original image | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param value: how much to adjust the brightness. Can be any | |||
| non negative number. 0 gives the original image. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, value, *, order=None): | |||
| @@ -857,9 +857,9 @@ class BrightnessTransform(VisionTransform): | |||
| class ContrastTransform(VisionTransform): | |||
| r"""Adjust contrast of the input data. | |||
| :param value: How much to adjust the contrast. Can be any | |||
| non negative number. 0 gives the original image | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param value: how much to adjust the contrast. Can be any | |||
| non negative number. 0 gives the original image. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, value, *, order=None): | |||
| @@ -888,9 +888,9 @@ class ContrastTransform(VisionTransform): | |||
| class SaturationTransform(VisionTransform): | |||
| r"""Adjust saturation of the input data. | |||
| :param value: How much to adjust the saturation. Can be any | |||
| non negative number. 0 gives the original image | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param value: how much to adjust the saturation. Can be any | |||
| non negative number. 0 gives the original image. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, value, *, order=None): | |||
| @@ -919,9 +919,9 @@ class SaturationTransform(VisionTransform): | |||
| class HueTransform(VisionTransform): | |||
| r"""Adjust hue of the input data. | |||
| :param value: How much to adjust the hue. Can be any number | |||
| between 0 and 0.5, 0 gives the original image | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param value: how much to adjust the hue. Can be any number | |||
| between 0 and 0.5, 0 gives the original image. | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, value, *, order=None): | |||
| @@ -957,19 +957,19 @@ class HueTransform(VisionTransform): | |||
| class ColorJitter(VisionTransform): | |||
| r"""Randomly change the brightness, contrast, saturation and hue of an image. | |||
| :param brightness: How much to jitter brightness. | |||
| :param brightness: how much to jitter brightness. | |||
| Chosen uniformly from [max(0, 1 - brightness), 1 + brightness] | |||
| or the given [min, max]. Should be non negative numbers. | |||
| :param contrast: How much to jitter contrast. | |||
| :param contrast: how much to jitter contrast. | |||
| Chosen uniformly from [max(0, 1 - contrast), 1 + contrast] | |||
| or the given [min, max]. Should be non negative numbers. | |||
| :param saturation: How much to jitter saturation. | |||
| :param saturation: how much to jitter saturation. | |||
| Chosen uniformly from [max(0, 1 - saturation), 1 + saturation] | |||
| or the given [min, max]. Should be non negative numbers. | |||
| :param hue: How much to jitter hue. | |||
| :param hue: how much to jitter hue. | |||
| Chosen uniformly from [-hue, hue] or the given [min, max]. | |||
| Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. | |||
| :param order: The same with :class:`VisionTransform` | |||
| :param order: the same with :class:`VisionTransform`. | |||
| """ | |||
| def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, *, order=None): | |||
| @@ -71,11 +71,11 @@ def set_default_device(device: str = "xpux"): | |||
| 'multithread' device type is avaliable when inference, which implements | |||
| multi-threading parallelism at the operator level. For example, | |||
| 'multithread4' will compute with 4 threads. which implements | |||
| 'multithread4' will compute with 4 threads. | |||
| The default value is 'xpux' to specify any device available. The priority of using gpu is higher when both gpu and cpu are available. | |||
| It can also be set by environmental variable `MGE_DEFAULT_DEVICE`. | |||
| It can also be set by environment variable `MGE_DEFAULT_DEVICE`. | |||
| """ | |||
| assert _valid_device(device), "Invalid device name {}".format(device) | |||
| CompNode._set_default_device(device) | |||
| @@ -99,13 +99,13 @@ def set_prealloc_config( | |||
| growth_factor=2.0, | |||
| device_type=DeviceType.CUDA, | |||
| ): | |||
| """specifies how to pre-allocate from raw dev allocator | |||
| """Specifies how to pre-allocate from raw device allocator. | |||
| :param alignment: specifies the alignment in bytes. | |||
| :param min_req: min request size in bytes. | |||
| :param max_overhead: max overhead above required size in bytes. | |||
| :growth_factor: request size / cur allocated | |||
| :device_type: the device type | |||
| :param growth_factor: `request size / cur allocated` | |||
| :param device_type: the device type | |||
| """ | |||
| assert alignment > 0 | |||
| @@ -102,7 +102,7 @@ def _(op: RemoteRecv): | |||
| def collective_comm(inp, mode, group, device): | |||
| """Helper function for applying collective communication functions""" | |||
| """Helper function for applying collective communication functions.""" | |||
| assert isinstance(group, Group) | |||
| if group is None: | |||
| return inp | |||
| @@ -123,11 +123,11 @@ def collective_comm(inp, mode, group, device): | |||
| def reduce_sum( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create reduce_sum operator for collective communication | |||
| """Create reduce_sum operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.REDUCE_SUM | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -136,11 +136,11 @@ def reduce_sum( | |||
| def broadcast( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create broadcast operator for collective communication | |||
| """Create broadcast operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.BROADCAST | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -149,11 +149,11 @@ def broadcast( | |||
| def all_gather( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create all_gather operator for collective communication | |||
| """Create all_gather operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.ALL_GATHER | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -162,11 +162,11 @@ def all_gather( | |||
| def reduce_scatter_sum( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create reduce_scatter_sum operator for collective communication | |||
| """Create reduce_scatter_sum operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.REDUCE_SCATTER_SUM | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -175,11 +175,11 @@ def reduce_scatter_sum( | |||
| def all_reduce_sum( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create all_reduce_sum operator for collective communication | |||
| """Create all_reduce_sum operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.ALL_REDUCE_SUM | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -188,11 +188,11 @@ def all_reduce_sum( | |||
| def all_reduce_max( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create all_reduce_max operator for collective communication | |||
| """Create all_reduce_max operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.ALL_REDUCE_MAX | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -201,11 +201,11 @@ def all_reduce_max( | |||
| def all_reduce_min( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create all_reduce_min operator for collective communication | |||
| """Create all_reduce_min operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.ALL_REDUCE_MIN | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -214,11 +214,11 @@ def all_reduce_min( | |||
| def gather( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create gather operator for collective communication | |||
| """Create gather operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.GATHER | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -227,11 +227,11 @@ def gather( | |||
| def scatter( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create scatter operator for collective communication | |||
| """Create scatter operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.SCATTER | |||
| return collective_comm(inp, mode, group, device) | |||
| @@ -240,21 +240,21 @@ def scatter( | |||
| def all_to_all( | |||
| inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
| ) -> Tensor: | |||
| """Create all_to_all operator for collective communication | |||
| """Create all_to_all operator for collective communication. | |||
| :param inp: input tensor | |||
| :param group: communication group | |||
| :param device: execute placement | |||
| :param inp: input tensor. | |||
| :param group: communication group. | |||
| :param device: execution device. | |||
| """ | |||
| mode = CollectiveCommMode.ALL_TO_ALL | |||
| return collective_comm(inp, mode, group, device) | |||
| def remote_send(inp: Tensor, dest_rank: int) -> Tensor: | |||
| """Send a Tensor to a remote process | |||
| """Send a Tensor to a remote process. | |||
| :param inp: tensor to send | |||
| :param dest_rank: destination process rank | |||
| :param inp: tensor to send. | |||
| :param dest_rank: destination process rank. | |||
| """ | |||
| op = RemoteSend() | |||
| op.key = "{}->{}".format(get_rank(), dest_rank) | |||
| @@ -266,12 +266,12 @@ def remote_send(inp: Tensor, dest_rank: int) -> Tensor: | |||
| def remote_recv( | |||
| src_rank: int, shape: Tuple[int], dtype: type, device: Optional[str] = None | |||
| ) -> Tensor: | |||
| """Receive a Tensor from a remote process | |||
| """Receive a Tensor from a remote process. | |||
| :param src_rank: source process rank | |||
| :param shape: the shape of the tensor to receive | |||
| :param dtype: the data type of the tensor to receive | |||
| :param device: the device to place the received tensor | |||
| :param src_rank: source process rank. | |||
| :param shape: the shape of the tensor to receive. | |||
| :param dtype: the data type of the tensor to receive. | |||
| :param device: the device to place the received tensor. | |||
| """ | |||
| key = "{}->{}".format(src_rank, get_rank()) | |||
| @@ -83,12 +83,12 @@ def init_process_group( | |||
| ) -> None: | |||
| """Initialize the distributed process group and specify the device used in the current process | |||
| :param master_ip: IP address of the master node | |||
| :param port: Port available for all processes to communicate | |||
| :param world_size: Total number of processes participating in the job | |||
| :param rank: Rank of the current process | |||
| :param device: The GPU device id to bind this process to | |||
| :param backend: Communicator backend, currently support 'nccl' and 'ucx' | |||
| :param master_ip: ip address of the master node. | |||
| :param port: port available for all processes to communicate. | |||
| :param world_size: total number of processes participating in the job. | |||
| :param rank: rank of the current process. | |||
| :param device: the GPU device id to bind this process to. | |||
| :param backend: communicator backend, currently support 'nccl' and 'ucx'. | |||
| """ | |||
| if not isinstance(master_ip, str): | |||
| raise TypeError("Expect type str but got {}".format(type(master_ip))) | |||
| @@ -127,50 +127,50 @@ def init_process_group( | |||
| def is_distributed() -> bool: | |||
| """Return True if the distributed process group has been initialized""" | |||
| """Return True if the distributed process group has been initialized.""" | |||
| return _sd is not None | |||
| def get_rank() -> int: | |||
| """Get the rank of the current process""" | |||
| """Get the rank of the current process.""" | |||
| return _sd.proc_rank if _sd is not None else 0 | |||
| def get_world_size() -> int: | |||
| """Get the total number of processes participating in the job""" | |||
| """Get the total number of processes participating in the job.""" | |||
| return _sd.world_size if _sd is not None else 1 | |||
| def get_backend() -> str: | |||
| """Get the backend str""" | |||
| """Get the backend str.""" | |||
| assert _sd is not None, "please call init_process_group first" | |||
| return _sd.backend if _sd is not None else None | |||
| def get_py_server_addr() -> Tuple[str, int]: | |||
| """Get master_ip and port of python XML RPC server""" | |||
| """Get master_ip and port of python XML RPC server.""" | |||
| assert _sd is not None, "please call init_process_group first" | |||
| return _sd.master_ip, _sd.py_server_port | |||
| def get_mm_server_addr() -> Tuple[str, int]: | |||
| """Get master_ip and port of C++ mm_server""" | |||
| """Get master_ip and port of C++ mm_server.""" | |||
| assert _sd is not None, "please call init_process_group first" | |||
| return _sd.master_ip, _sd.mm_server_port | |||
| def get_client() -> Client: | |||
| """Get client of python XML RPC server""" | |||
| """Get client of python XML RPC server.""" | |||
| assert _sd is not None, "please call init_process_group first" | |||
| return _sd.client | |||
| def new_group(proc_ranks: List[int]) -> Group: | |||
| """Build a subgroup containing certain ranks""" | |||
| """Build a subgroup containing certain ranks.""" | |||
| return Group(proc_ranks) | |||
| def group_barrier(group: Optional[Group] = WORLD) -> None: | |||
| """Block until all ranks in the group reach this barrier""" | |||
| """Block until all ranks in the group reach this barrier.""" | |||
| assert isinstance(group, Group) | |||
| _sd.client.group_barrier(group.key, group.size) | |||
| @@ -15,7 +15,7 @@ from .util import get_free_ports | |||
| def _run_wrapped(func, master_ip, port, world_size, rank, dev, args, kwargs): | |||
| """init distributed process group and run wrapped function""" | |||
| """Init distributed process group and run wrapped function.""" | |||
| init_process_group( | |||
| master_ip=master_ip, port=port, world_size=world_size, rank=rank, device=dev | |||
| ) | |||
| @@ -23,7 +23,7 @@ def _run_wrapped(func, master_ip, port, world_size, rank, dev, args, kwargs): | |||
| def launcher(func): | |||
| """decorator for launching multiple processes in single-machine multi-gpu training""" | |||
| """Decorator for launching multiple processes in single-machine multi-gpu training.""" | |||
| n_gpus = get_device_count_by_fork("gpu") | |||
| @@ -26,14 +26,14 @@ def set_conv_execution_strategy(option: str): | |||
| Available values: | |||
| * 'HEURISTIC' uses heuristic to choose the fastest algorithm. | |||
| * 'PROFILE' runs possible algorithms on real device to find the best. | |||
| * 'PROFILE_HEURISTIC' uses profile result and heuristic to choose the fastest algorithm. | |||
| * 'PROFILE_REPRODUCIBLE' uses the fastest of profile result that is also reproducible. | |||
| * 'PROFILE' runs possible algorithms on real device to find the best one. | |||
| * 'PROFILE_HEURISTIC' uses profiling result and heuristic to choose the fastest algorithm. | |||
| * 'PROFILE_REPRODUCIBLE' uses the fastest of profiling result that is also reproducible. | |||
| * 'HEURISTIC_REPRODUCIBLE' uses heuristic to choose the fastest algorithm that is also reproducible. | |||
| The default strategy is 'HEURISTIC'. | |||
| It can also be set through the environmental variable 'MEGENGINE_CONV_EXECUTION_STRATEGY'. | |||
| It can also be set through the environment variable 'MEGENGINE_CONV_EXECUTION_STRATEGY'. | |||
| """ | |||
| valid_option = ( | |||
| "HEURISTIC", | |||
| @@ -99,8 +99,9 @@ def _elemwise_multi_type(*args, mode, **kwargs): | |||
| def add(x, y): | |||
| """Element-wise addition. | |||
| """Element-wise `addition`. | |||
| At least one operand should be tensor. | |||
| Same for sub/mul/div/floor_div/pow/mod/atan2/eq/ne/lt/le/gt/ge/maximum/minmium. | |||
| :param x: input tensor. | |||
| @@ -131,68 +132,68 @@ def add(x, y): | |||
| def sub(x, y): | |||
| """Element-wise subtraction.""" | |||
| """Element-wise `subtraction`.""" | |||
| return _elwise(x, y, mode="sub") | |||
| def mul(x, y): | |||
| """Element-wise multiplication.""" | |||
| """Element-wise `multiplication`.""" | |||
| return _elwise(x, y, mode="mul") | |||
| def div(x, y): | |||
| """Element-wise (x / y).""" | |||
| """Element-wise `(x / y)`.""" | |||
| return _elwise(x, y, mode="true_div") | |||
| def floor_div(x, y): | |||
| """Element-wise floor(x / y).""" | |||
| """Element-wise `floor(x / y)`.""" | |||
| return _elwise(x, y, mode="floor_divide") | |||
| def neg(x): | |||
| """Element-wise negation.""" | |||
| """Element-wise `negation`.""" | |||
| return _elwise(x, mode="negate") | |||
| def pow(x, y): | |||
| """Element-wise power.""" | |||
| """Element-wise `power`.""" | |||
| return _elwise(x, y, mode="pow") | |||
| def mod(x, y): | |||
| """Element-wise remainder of division.""" | |||
| """Element-wise `remainder of division`.""" | |||
| return _elwise(x, y, mode="mod") | |||
| def abs(x): | |||
| """Element-wise absolute value.""" | |||
| """Element-wise `absolute value`.""" | |||
| return _elwise(x, mode="abs") | |||
| def exp(x): | |||
| """Element-wise exponential.""" | |||
| """Element-wise `exponential`.""" | |||
| return _elwise(x, mode="exp") | |||
| def expm1(x): | |||
| """Element-wise exp(x)-1.""" | |||
| """Element-wise `exp(x)-1`.""" | |||
| return _elwise(x, mode="expm1") | |||
| def log(x): | |||
| """Element-wise logarithm (base `e`).""" | |||
| """Element-wise `logarithm (base e)`.""" | |||
| return _elwise(x, mode="log") | |||
| def log1p(x): | |||
| """Element-wise log(x+1) (base `e`).""" | |||
| """Element-wise `log(x+1) (base e)`.""" | |||
| return _elwise(x, mode="log1p") | |||
| def sqrt(x: Tensor) -> Tensor: | |||
| """Element-wise sqrt. | |||
| For negative input value, return ``NaN``. | |||
| """Element-wise `sqrt`. | |||
| Returns ``NaN`` for negative input value. | |||
| :param x: input tensor. | |||
| :return: computed tensor. | |||
| @@ -222,7 +223,7 @@ def sqrt(x: Tensor) -> Tensor: | |||
| def square(x: Tensor) -> Tensor: | |||
| """ | |||
| Return a new tensor with the square of the elements of input tensor. | |||
| Returns a new tensor with the square of the elements of input tensor. | |||
| :param inp: The input tensor | |||
| :return: The computed tensor | |||
| @@ -251,27 +252,27 @@ def square(x: Tensor) -> Tensor: | |||
| def round(x): | |||
| """Element-wise rounding to int.""" | |||
| """Element-wise `rounding to int`.""" | |||
| return _elwise(x, mode="round") | |||
| def ceil(x): | |||
| """Element-wise ceiling.""" | |||
| """Element-wise `ceiling`.""" | |||
| return _elwise(x, mode="ceil") | |||
| def floor(x): | |||
| """Element-wise floor.""" | |||
| """Element-wise `floor`.""" | |||
| return _elwise(x, mode="floor") | |||
| def maximum(x, y): | |||
| """Element-wise maximum of array elements.""" | |||
| """Element-wise `maximum of array elements`.""" | |||
| return _elwise(x, y, mode="max") | |||
| def minimum(x, y): | |||
| """Element-wise minimum of array elements.""" | |||
| """Element-wise `minimum of array elements`.""" | |||
| return _elwise(x, y, mode="min") | |||
| @@ -279,7 +280,7 @@ def minimum(x, y): | |||
| def cos(x): | |||
| """Element-wise cosine. | |||
| """Element-wise `cosine`. | |||
| :param x: input tensor. | |||
| :return: computed tensor. | |||
| @@ -308,68 +309,68 @@ def cos(x): | |||
| def sin(x): | |||
| """Element-wise sine.""" | |||
| """Element-wise `sine`.""" | |||
| return _elwise(x, mode="sin") | |||
| def tan(x): | |||
| """Element-wise tangent.""" | |||
| """Element-wise `tangent`.""" | |||
| return sin(x) / cos(x) | |||
| def acos(x): | |||
| """Element-wise inverse cosine.""" | |||
| """Element-wise `inverse cosine`.""" | |||
| return _elwise(x, mode="acos") | |||
| def asin(x): | |||
| """Element-wise inverse sine.""" | |||
| """Element-wise `inverse sine`.""" | |||
| return _elwise(x, mode="asin") | |||
| def atan(x): | |||
| """Element-wise inverse tangent.""" | |||
| """Element-wise `inverse tangent`.""" | |||
| return _elwise(x, 1, mode="atan2") | |||
| def atan2(y, x): | |||
| """Element-wise 2-argument arctangent.""" | |||
| """Element-wise `2-argument arctangent`.""" | |||
| return _elwise(y, x, mode="atan2") | |||
| def cosh(x): | |||
| r"""Element-wise hyperbolic cosine.""" | |||
| r"""Element-wise `hyperbolic cosine`.""" | |||
| return 0.5 * (exp(x) + exp(-x)) | |||
| def sinh(x): | |||
| r"""Element-wise hyperbolic sine.""" | |||
| r"""Element-wise `hyperbolic sine`.""" | |||
| u = expm1(x) | |||
| return 0.5 * u / (u + 1) * (u + 2) | |||
| def tanh(x): | |||
| r"""Element-wise hyperbolic tangent.""" | |||
| r"""Element-wise `hyperbolic tangent`.""" | |||
| return _elwise(x, mode="tanh") | |||
| def asinh(x): | |||
| r"""Element-wise inverse hyperbolic sine.""" | |||
| r"""Element-wise `inverse hyperbolic sine`.""" | |||
| return log(x + (x ** 2 + 1) ** 0.5) | |||
| def acosh(x): | |||
| r"""Element-wise inverse hyperbolic cosine.""" | |||
| r"""Element-wise `inverse hyperbolic cosine`.""" | |||
| return log(x + (x ** 2 - 1) ** 0.5) | |||
| def atanh(x): | |||
| r"""Element-wise inverse hyperbolic tangent.""" | |||
| r"""Element-wise `inverse hyperbolic tangent`.""" | |||
| return log1p(2 * x / (1 - x)) / 2 | |||
| def fast_tanh(x): | |||
| r"""Element-wise fast tanh; this is an approximation: | |||
| r"""Element-wise `fast tanh`; this is an approximation: | |||
| .. math:: | |||
| \text{fast_tanh}(x) = x * (27. + x * x) / (27. + 9. * x * x) | |||
| @@ -381,7 +382,7 @@ def fast_tanh(x): | |||
| def left_shift(x, y): | |||
| """Element-wise bitwise binary: x << y. | |||
| """Element-wise `bitwise binary: x << y`. | |||
| :param x: input tensor, should be int. | |||
| :param y: how many bits to be left-shifted. | |||
| @@ -411,7 +412,7 @@ def left_shift(x, y): | |||
| def right_shift(x, y): | |||
| """Element-wise bitwise binary: x >> y.""" | |||
| """Element-wise `bitwise binary: x >> y`.""" | |||
| return _elwise(x, y, mode="shr") | |||
| @@ -419,22 +420,22 @@ def right_shift(x, y): | |||
| def logical_and(x, y): | |||
| """Element-wise logical and: x && y.""" | |||
| """Element-wise `logical and: x && y`.""" | |||
| return _elwise(x, y, mode="AND") | |||
| def logical_not(x): | |||
| """Element-wise logical not: ~x.""" | |||
| """Element-wise `logical not: ~x`.""" | |||
| return _elwise(x, mode="NOT") | |||
| def logical_or(x, y): | |||
| """Element-wise logical or: x || y.""" | |||
| """Element-wise `logical or: x || y`.""" | |||
| return _elwise(x, y, mode="OR") | |||
| def logical_xor(x, y): | |||
| """Element-wise logical xor: x ^ y.""" | |||
| """Element-wise `logical xor: x ^ y`.""" | |||
| return _elwise(x, y, mode="XOR") | |||
| @@ -442,7 +443,7 @@ def logical_xor(x, y): | |||
| def eq(x, y): | |||
| """Element-wise (x == y). | |||
| """Element-wise `(x == y)`. | |||
| :param x: input tensor 1. | |||
| :param y: input tensor 2. | |||
| @@ -473,27 +474,27 @@ def eq(x, y): | |||
| def ne(x, y): | |||
| """Element-wise (x != y).""" | |||
| """Element-wise `(x != y)`.""" | |||
| return x != y | |||
| def lt(x, y): | |||
| """Element-wise (x < y).""" | |||
| """Element-wise `(x < y)`.""" | |||
| return _elwise(x, y, mode="lt") | |||
| def le(x, y): | |||
| """Element-wise (x <= y).""" | |||
| """Element-wise `(x <= y)`.""" | |||
| return _elwise(x, y, mode="leq") | |||
| def gt(x, y): | |||
| """Element-wise (x > y).""" | |||
| """Element-wise `(x > y)`.""" | |||
| return _elwise(y, x, mode="lt") | |||
| def ge(x, y): | |||
| """Element-wise (x >= y).""" | |||
| """Element-wise `(x >= y)`.""" | |||
| return _elwise(y, x, mode="leq") | |||
| @@ -501,7 +502,7 @@ def ge(x, y): | |||
| def hswish(x): | |||
| """Element-wise x * relu6(x + 3) / 6. | |||
| """Element-wise `x * relu6(x + 3) / 6`. | |||
| :param x: input tensor. | |||
| :return: computed tensor. | |||
| @@ -527,7 +528,7 @@ def hswish(x): | |||
| def hsigmoid(x): | |||
| """Element-wise relu6(x + 3) / 6.""" | |||
| """Element-wise `relu6(x + 3) / 6`.""" | |||
| return relu6(x + 3) / 6 | |||
| @@ -537,12 +538,12 @@ def relu(x): | |||
| def relu6(x): | |||
| """Element-wise min(max(x, 0), 6).""" | |||
| """Element-wise `min(max(x, 0), 6)`.""" | |||
| return minimum(maximum(x, 0), 6) | |||
| def sigmoid(x): | |||
| """Element-wise 1 / ( 1 + exp( -x ) ).""" | |||
| """Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
| return _elwise(x, mode="sigmoid") | |||
| @@ -1,44 +0,0 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| # | |||
| # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # pylint: disable=too-many-lines | |||
| from typing import List | |||
| from ..tensor import Tensor | |||
| def cambricon_subgraph( | |||
| inputs: List[Tensor], data: bytes, symbol: str, tensor_dim_mutable: bool, | |||
| ) -> List[Tensor]: | |||
| """Loads a serialized Cambricon subgraph (i.e. cnrtModel_t) and | |||
| execute the operations defined in the subgraph. | |||
| :param inputs: list of input tensors of the subgraph. | |||
| :param data: the serialized subgraph. | |||
| :param symbol: the name of the function in the subgraph. | |||
| The function is corresponding to a cnmlFusionOp | |||
| which is added to the cnmlModel_t/cnrtModel_t. | |||
| :param tensor_dim_mutable: whether the input tensors' shapes are mutalbe | |||
| in cnrtModel_t. | |||
| """ | |||
| raise NotImplementedError | |||
| def extern_opr_subgraph( | |||
| inputs, output_shapes: List[tuple], dump_name: str, dump_data: bytes, | |||
| ) -> List[Tensor]: | |||
| """Loads a serialized extern opr subgraph and fake execute the operator. | |||
| :param inputs: tensor or list of input tensors. | |||
| :param output_shapes: the output shapes. | |||
| :param dump_name: the serialized subgraph name. | |||
| :param dump_data: the serialized subgraph. | |||
| :return: list of tensors. | |||
| """ | |||
| raise NotImplementedError | |||
| @@ -132,7 +132,7 @@ def cross_entropy_with_softmax( | |||
| .. math:: y^{LS}_{k}=y_{k}\left(1-\alpha\right)+\alpha/K | |||
| where :math:`y^{LS}` and :math:`y` are new label distribution and origin label distribution respectively. | |||
| k is the index of label distribution. :math:`\alpha` is label_smooth and :math:`K` is the number of classes. | |||
| k is the index of label distribution. :math:`\alpha` is ``label_smooth`` and :math:`K` is the number of classes. | |||
| :param pred: input tensor representing the predicted probability. | |||
| :param label: input tensor representing the classification label. | |||
| @@ -188,7 +188,7 @@ def cross_entropy_with_softmax( | |||
| def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
| r"""Function that measures the Binary Cross Entropy between the target and the prediction. | |||
| :param pred: `(N, *)` where `*` means any number of additional dimensions. | |||
| :param pred: `(N, *)`, where `*` means any number of additional dimensions. | |||
| :param label: `(N, *)`, same shape as the input. | |||
| :return: loss value. | |||
| @@ -216,7 +216,7 @@ def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
| def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
| r"""Caculate the hinge loss which is often used in SVMs. | |||
| r"""Caculates the hinge loss which is often used in SVM. | |||
| The hinge loss can be described as: | |||
| @@ -46,7 +46,7 @@ def isnan(inp: Tensor) -> Tensor: | |||
| r"""Returns a new tensor representing if each element is ``NaN`` or not. | |||
| :param inp: input tensor. | |||
| :return: a new tensor representing if each element in inp is NaN or not. | |||
| :return: result tensor. | |||
| Examples: | |||
| @@ -72,7 +72,7 @@ def isinf(inp: Tensor) -> Tensor: | |||
| r"""Returns a new tensor representing if each element is ``Inf`` or not. | |||
| :param inp: input tensor. | |||
| :return: a new tensor representing if each element in inp is Inf or not. | |||
| :return: c. | |||
| Examples: | |||
| @@ -129,7 +129,7 @@ def sum( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. | |||
| Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. | |||
| Default: False | |||
| @@ -164,7 +164,7 @@ def prod( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -200,7 +200,7 @@ def mean( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -236,7 +236,7 @@ def var( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -276,7 +276,7 @@ def std( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -311,7 +311,7 @@ def min( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -347,7 +347,7 @@ def max( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -427,7 +427,7 @@ def argmin( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -485,7 +485,7 @@ def argmax( | |||
| reduce over all of them. | |||
| :param inp: input tensor. | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
| :param keepdims: whether the output tensor has axis retained or not. Default: False | |||
| :return: output tensor. | |||
| @@ -543,15 +543,15 @@ def normalize( | |||
| given axis. If axis is a list of dimensions, | |||
| reduce over all of them. | |||
| For a tensor inp of shape :math:`(n_0, ..., n_{dim}, ..., n_k)`, each | |||
| For a tensor of shape :math:`(n_0, ..., n_{dim}, ..., n_k)`, each | |||
| :math:`n_{dim}` -element vector :math:`v` along dimension :attr:`axis` is transformed as: | |||
| .. math:: | |||
| v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}. | |||
| :param inp: input tensor. | |||
| :param p: power of value applied to inp. Default: 2 | |||
| :param axis: dimension to reduce. If None, all the dimensions will be reduced | |||
| :param p: power of value applied to input tensor. Default: 2 | |||
| :param axis: dimension to reduce. If None, all dimensions will be reduced | |||
| to calculate the norm. Default: None | |||
| :param eps: a small value to avoid division by zero. Default: 1e-12 | |||
| :return: normalized output tensor. | |||
| @@ -563,11 +563,11 @@ def normalize( | |||
| def argsort(inp: Tensor, descending: bool = False) -> Tensor: | |||
| r"""Sorts the target 2d matrix by row, return both the sorted tensor and indices. | |||
| r"""Returns the indices that would sort the input tensor. | |||
| :param inp: input tensor, if 2d, each row will be sorted. | |||
| :param descending: Sort in descending order, where the largest comes first. Default: False | |||
| :return: Tuple of two tensors `(sorted_tensor, indices_of_int32)`. | |||
| :param inp: input tensor. If it's 2d, the result would be array of indices show how to sort each row in the input tensor. | |||
| :param descending: sort in descending order, where the largest comes first. Default: False | |||
| :return: indices of int32 indicates how to sort the input. | |||
| Examples: | |||
| @@ -604,6 +604,31 @@ def argsort(inp: Tensor, descending: bool = False) -> Tensor: | |||
| def sort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]: | |||
| r"""Returns sorted tensor and the indices would sort the input tensor. | |||
| :param inp: input tensor. If it's 2d, the result would be sorted by row. | |||
| :param descending: sort in descending order, where the largest comes first. Default: False | |||
| :return: tuple of two tensors `(sorted_tensor, indices_of_int32)`. | |||
| Examples: | |||
| .. testcode:: | |||
| import numpy as np | |||
| from megengine import tensor | |||
| import megengine.functional as F | |||
| x = tensor(np.array([1,2], dtype=np.float32)) | |||
| out, indices = F.sort(x) | |||
| print(out.numpy()) | |||
| Outputs: | |||
| .. testoutput:: | |||
| [1. 2.] | |||
| """ | |||
| assert len(inp.shape) <= 2, "Input should be 1d or 2d" | |||
| if descending: | |||
| order = P.Argsort.Order.DESCENDING | |||
| @@ -626,13 +651,13 @@ def topk( | |||
| kth_only: bool = False, | |||
| no_sort: bool = False, | |||
| ) -> Tuple[Tensor, Tensor]: | |||
| r"""Selects the ``Top-K(by default)`` smallest elements of 2d matrix by row. | |||
| r"""Selects the ``Top-K``(by default) smallest elements of 2d matrix by row. | |||
| :param inp: input tensor, if 2d, each row will be sorted. | |||
| :param inp: input tensor. If input tensor is 2d, each row will be sorted. | |||
| :param k: number of elements needed. | |||
| :param descending: if true, return the largest elements instead. Default: False | |||
| :param kth_only: if true, only the k-th element will be returned. Default: False | |||
| :param no_sort: if true, the returned elements can be unordered. Default: False | |||
| :param descending: if True, return the largest elements instead. Default: False | |||
| :param kth_only: if True, only the k-th element will be returned. Default: False | |||
| :param no_sort: if True, the returned elements can be unordered. Default: False | |||
| :return: tuple of two tensors `(topk_tensor, indices_of_int32)`. | |||
| Examples: | |||
| @@ -107,19 +107,18 @@ def conv2d( | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param dilation: dilation of the 2D convolution operation. Default: 1 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a ``grouped convolution``. When groups is not 1, | |||
| in_channels and out_channels must be divisible by groups, | |||
| :param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
| and the shape of weight should be `(groups, out_channel // groups, | |||
| in_channels // groups, height, width)`. | |||
| :type conv_mode: string or :class:`P.Convolution.Mode`. | |||
| :type conv_mode: string or :class:`P.Convolution.Mode` | |||
| :param conv_mode: supports "CROSS_CORRELATION" or "CONVOLUTION". Default: | |||
| "CROSS_CORRELATION" | |||
| :type compute_mode: string or | |||
| :class:`P.Convolution.ComputeMode`. | |||
| :class:`P.Convolution.ComputeMode` | |||
| :param compute_mode: when set to "DEFAULT", no special requirements will be | |||
| placed on the precision of intermediate results. When set to "FLOAT32", | |||
| Float32 would be used for accumulator and intermediate result, but only | |||
| "Float32" would be used for accumulator and intermediate result, but only | |||
| effective when input and output are of Float16 dtype. | |||
| :return: output tensor. | |||
| """ | |||
| @@ -168,24 +167,23 @@ def conv_transpose2d( | |||
| :param inp: feature map of the convolution operation. | |||
| :param weight: convolution kernel. | |||
| :param bias: bias added to the result of convolution (if given) | |||
| :param bias: bias added to the result of convolution (if given). | |||
| :param stride: stride of the 2D convolution operation. Default: 1 | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param dilation: dilation of the 2D convolution operation. Default: 1 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a ``grouped convolution``. When groups is not 1, | |||
| in_channels and out_channels must be divisible by groups, | |||
| :param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by groups, | |||
| and the shape of weight should be `(groups, out_channel // groups, | |||
| in_channels // groups, height, width)`. Default: 1 | |||
| :type conv_mode: string or :class:`P.Convolution.Mode`. | |||
| :type conv_mode: string or :class:`P.Convolution.Mode` | |||
| :param conv_mode: supports "CROSS_CORRELATION" or "CONVOLUTION". Default: | |||
| "CROSS_CORRELATION" | |||
| :type compute_mode: string or | |||
| :class:`P.Convolution.ComputeMode`. | |||
| :class:`P.Convolution.ComputeMode` | |||
| :param compute_mode: when set to "DEFAULT", no special requirements will be | |||
| placed on the precision of intermediate results. When set to "FLOAT32", | |||
| Float32 would be used for accumulator and intermediate result, but only | |||
| "Float32" would be used for accumulator and intermediate result, but only | |||
| effective when input and output are of Float16 dtype. | |||
| :return: output tensor. | |||
| """ | |||
| @@ -224,7 +222,7 @@ def local_conv2d( | |||
| dilation: Union[int, Tuple[int, int]] = 1, | |||
| conv_mode="CROSS_CORRELATION", | |||
| ) -> Tensor: | |||
| """Applies spatial 2D convolution over an image with untied kernels. | |||
| """Applies spatial 2D convolution over an image with unshared kernels. | |||
| Refer to :class:`~.LocalConv2d` for more information. | |||
| """ | |||
| @@ -264,7 +262,7 @@ def max_pool2d( | |||
| :param kernel_size: size of the window. | |||
| :param stride: stride of the window. If not provided, its value is set to kernel_size. | |||
| Default: None | |||
| :param padding: implicit zero padding to be added on both sides. Default: 0 | |||
| :param padding: implicit zero padding added on both sides. Default: 0 | |||
| :return: output tensor. | |||
| """ | |||
| if stride is None: | |||
| @@ -293,15 +291,15 @@ def avg_pool2d( | |||
| padding: Union[int, Tuple[int, int]] = 0, | |||
| mode: str = "AVERAGE_COUNT_EXCLUDE_PADDING", | |||
| ) -> Tensor: | |||
| """Applies a 2D average pooling over an input tensor. | |||
| """Applies 2D average pooling over an input tensor. | |||
| Refer to :class:`~.AvgPool2d` for more information. | |||
| :param inp: input tensor. | |||
| :param kernel_size: size of the window. | |||
| :param stride: stride of the window. If not provided, its value is set to kernel_size. | |||
| :param stride: stride of the window. If not provided, its value is set to ``kernel_size``. | |||
| Default: None | |||
| :param padding: implicit zero padding to be added on both sides. Default: 0 | |||
| :param padding: implicit zero padding added on both sides. Default: 0 | |||
| :param mode: whether to count padding values. Default: "AVERAGE_COUNT_EXCLUDE_PADDING" | |||
| :return: output tensor. | |||
| """ | |||
| @@ -349,7 +347,7 @@ def softplus(inp: Tensor) -> Tensor: | |||
| \text{softplus}(x) = \log(1 + \exp(x)) | |||
| softplus is a smooth approximation to the ReLU function and can be used | |||
| to constrain the output of a machine to always be positive. | |||
| to constrain the output to be always positive. | |||
| For numerical stability the implementation follows this transformation: | |||
| .. math:: | |||
| @@ -357,7 +355,7 @@ def softplus(inp: Tensor) -> Tensor: | |||
| = \log(1 + \exp(-\text{abs}(x))) + \max(x, 0) | |||
| = \log1p(\exp(-\text{abs}(x))) + \text{relu}(x) | |||
| :param inp: The input tensor | |||
| :param inp: input tensor. | |||
| Examples: | |||
| @@ -396,8 +394,8 @@ def log_softmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
| = x - \log (\sum_{i}(\exp (x_{i}))) | |||
| = x - logsumexp(x) | |||
| :param inp: The input tensor | |||
| :param axis: An axis along which log_softmax will be applied. | |||
| :param inp: input tensor. | |||
| :param axis: axis along which log_softmax will be applied. | |||
| Examples: | |||
| @@ -431,7 +429,7 @@ def logsigmoid(inp: Tensor) -> Tensor: | |||
| = - \log(1 + exp(-x)) | |||
| = - \text{softplus}(-x) | |||
| :param inp: The input tensor | |||
| :param inp: input tensor. | |||
| Examples: | |||
| @@ -460,8 +458,7 @@ def logsumexp( | |||
| inp: Tensor, axis: Union[int, Sequence[int]], keepdims: bool = False | |||
| ) -> Tensor: | |||
| r""" | |||
| Compute the log of the sum of exponentials of inputs along the given :attr:`axis`. | |||
| The computation is numerically stabilized. | |||
| Calculates the logarithm of the inputs' exponential sum along the given :attr:`axis`. | |||
| .. math:: | |||
| @@ -479,8 +476,8 @@ def logsumexp( | |||
| .. math:: | |||
| b = \max(x_j) | |||
| :param inp: The input tensor. | |||
| :param axis: Axis over which the sum is taken. It can be a single axis or a list of axes. | |||
| :param inp: input tensor. | |||
| :param axis: axis over which the sum is taken. It could be single axis or list of axes. | |||
| :param keepdims: whether to retain :attr:`axis` or not for the output tensor. | |||
| Examples: | |||
| @@ -524,13 +521,13 @@ def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: | |||
| .. math:: | |||
| \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} | |||
| It is applied to all elements along axis, and will re-scale them so that | |||
| the elements lie in the range `[0, 1]` and sum to 1. | |||
| It is applied to all elements along axis, and rescales elements so that | |||
| they stay in the range `[0, 1]` and sum to 1. | |||
| See :class:`~megengine.module.activation.Softmax` for more details. | |||
| :param inp: The input tensor. | |||
| :param axis: An axis along which softmax will be applied. By default, | |||
| :param inp: input tensor. | |||
| :param axis: an axis along which softmax will be applied. By default, | |||
| softmax will apply along the highest ranked axis. | |||
| Examples: | |||
| @@ -573,7 +570,7 @@ def batch_norm2d( | |||
| eps: float = 1e-5, | |||
| inplace: bool = True | |||
| ): | |||
| """Applies batch normalization to the input. | |||
| r"""Applies batch normalization to the input. | |||
| Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. | |||
| @@ -585,13 +582,13 @@ def batch_norm2d( | |||
| :param bias: bias tensor in the learnable affine parameters. | |||
| See :math:`\beta` in :class:`~.BatchNorm2d`. | |||
| :param training: a boolean value to indicate whether batch norm is performed | |||
| in traning mode. Default: False | |||
| in training mode. Default: False | |||
| :param momentum: value used for the ``running_mean`` and ``running_var`` | |||
| computation. | |||
| Default: 0.9 | |||
| :param eps: a value added to the denominator for numerical stability. | |||
| Default: 1e-5 | |||
| :param inplace: whether to update running_mean and running_var inplace or return new tensors | |||
| :param inplace: whether to update ``running_mean`` and ``running_var`` inplace or return new tensors | |||
| Default: True | |||
| :return: output tensor. | |||
| """ | |||
| @@ -677,7 +674,7 @@ def sync_batch_norm( | |||
| eps_mode="ADDITIVE", | |||
| group=WORLD, | |||
| ) -> Tensor: | |||
| """Applies synchronized batch normalization to the input. | |||
| r"""Applies synchronized batch normalization to the input. | |||
| Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. | |||
| @@ -887,19 +884,18 @@ def matmul( | |||
| With different inputs dim, this function behaves differently: | |||
| - Both 1-D tensor, simply forward to dot. | |||
| - Both 1-D tensor, simply forward to ``dot``. | |||
| - Both 2-D tensor, normal matrix multiplication. | |||
| - If one input tensor is 1-D, matrix vector multiplication. | |||
| - If at least one tensor are 3-dimensional or >3-dimensional, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
| - If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
| be broadcasted. For example: | |||
| - inp1: `(k, m)`, inp2: `(m, p)`, return: `(k, p)` | |||
| - inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
| - inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
| - inp1: `(n, j, k, m)`, inp2: `(n, j, m, p)`, return: `(n, j, k, p)` | |||
| :param inp1: The first matrix to be multiplied | |||
| :param inp2: The second matrix to be multiplied | |||
| :return: The output tensor | |||
| :param inp1: first matrix to be multiplied. | |||
| :param inp2: second matrix to be multiplied. | |||
| :return: output tensor. | |||
| Examples: | |||
| @@ -983,12 +979,12 @@ def matmul( | |||
| def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| """ | |||
| Compute dot-product of two vectors ``inp1`` and ``inp2``. | |||
| Computes dot-product of two vectors ``inp1`` and ``inp2``. | |||
| inputs must be 1-dimensional, scalar input can be automatically broadcasted. | |||
| :param inp1: The first vector | |||
| :param inp2: The second vector | |||
| :return: The output value | |||
| :param inp1: first vector. | |||
| :param inp2: second vector. | |||
| :return: output value. | |||
| Examples: | |||
| @@ -1018,10 +1014,10 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
| def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
| """ | |||
| Compute the singular value decompositions of input matrix ``inp``. | |||
| Computes the singular value decompositions of input matrix. | |||
| :param inp: The input matrix, must has shape ``[..., M, N]`` | |||
| :return: The output matrices, U, sigma, V | |||
| :param inp: input matrix, must has shape `[..., M, N]`. | |||
| :return: output matrices, `(U, sigma, V)`. | |||
| Examples: | |||
| @@ -1054,8 +1050,7 @@ def interpolate( | |||
| mode: str = "BILINEAR", | |||
| align_corners: bool = None, | |||
| ) -> Tensor: | |||
| r"""Down/up samples the input tensor to either the given size or the given | |||
| scale_factor. | |||
| r"""Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
| :param inp: input tensor. | |||
| :param size: size of the output tensor. Default: None | |||
| @@ -1198,12 +1193,12 @@ def interpolate( | |||
| def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
| """Returns a new tensor where each of the elements are randomly set to zero | |||
| with probability P = ``drop_prob``. Optionally rescale the output tensor. | |||
| with probability P = ``drop_prob``. Optionally rescale the output tensor if ``training`` is True. | |||
| :param inp: input tensor. | |||
| :param drop_prob: probability to drop (set to zero) a single element. | |||
| :param training: the default behavior of ``dropout`` during training is to rescale the output, | |||
| then it can be replaced by an :class:`~.Identity` during inference, default to True. | |||
| then it can be replaced by an :class:`~.Identity` during inference. Default: True | |||
| :return: the output tensor | |||
| Examples: | |||
| @@ -1245,10 +1240,10 @@ def embedding( | |||
| """Applies lookup table for embedding. | |||
| :param inp: tensor with indices. | |||
| :param weight: learnable weights which embedding from. | |||
| :param padding_idx: should be set to None, not support now. | |||
| :param max_norm: should be set to None, not support now. | |||
| :param norm_type: should be set to None, not support now. | |||
| :param weight: learnable weights which embeds from. | |||
| :param padding_idx: should be set to None, not supported now. | |||
| :param max_norm: should be set to None, not supported now. | |||
| :param norm_type: should be set to None, not supported now. | |||
| :return: output tensor. | |||
| Refer to :class:`~.Embedding` for more information. | |||
| @@ -1324,14 +1319,14 @@ def roi_align( | |||
| ) -> Tensor: | |||
| """Applies roi align on input feature. | |||
| :param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
| :param rois: `(N, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
| :param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
| :param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
| :param output_shape: `(height, width)` shape of output rois feature. | |||
| :param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
| :param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
| :param sample_points: number of inputs samples to take for each output sample. | |||
| 0 to take samples densely. Default: 2 | |||
| :param aligned: wheather align the input feature, with `aligned=True`, | |||
| :param aligned: wheather to align the input feature, with `aligned=True`, | |||
| we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
| :return: output tensor. | |||
| @@ -1384,7 +1379,7 @@ def roi_align( | |||
| def indexing_one_hot( | |||
| src: Tensor, index: Tensor, axis: int = 1, keepdims=False | |||
| ) -> Tensor: | |||
| r"""One-hot indexing for some axis. | |||
| r"""One-hot indexing for some axes. | |||
| :param src: input tensor. | |||
| :param index: index tensor. | |||
| @@ -1427,7 +1422,7 @@ def nms(boxes: Tensor, scores: Tensor, iou_thresh: float) -> Tensor: | |||
| Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
| :param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
| :param iou_thresh: iou threshold for overlapping. | |||
| :param iou_thresh: IoU threshold for overlapping. | |||
| :param scores: tensor of shape `(N,)`, the score of boxes. | |||
| :return: indices of the elements that have been kept by NMS. | |||
| @@ -1483,11 +1478,11 @@ def batched_nms( | |||
| r""" | |||
| Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU). | |||
| :param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format | |||
| :param iou_thresh: iou threshold for overlapping | |||
| :param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
| :param iou_thresh: ``IoU`` threshold for overlapping. | |||
| :param idxs: tensor of shape `(N,)`, the class indexs of boxes in the batch. | |||
| :param scores: tensor of shape `(N,)`, the score of boxes. | |||
| :return: indices and the number of the elements that have been kept by NMS | |||
| :return: indices of the elements that have been kept by NMS. | |||
| Examples: | |||
| @@ -34,26 +34,23 @@ def conv_bias_activation( | |||
| :param weight: convolution kernel. | |||
| :param bias: bias added to the result of convolution | |||
| :param stride: stride of the 2D convolution operation. Default: 1 | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param padding: size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param dilation: dilation of the 2D convolution operation. Default: 1 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a "grouped convolution". When groups is not 1, | |||
| in_channels and out_channels must be divisible by groups, | |||
| :param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
| and the shape of weight should be `(groups, out_channel // groups, | |||
| in_channels // groups, height, width)`. | |||
| :type conv_mode: string or :class:`P.Convolution.Mode`. | |||
| :param conv_mode: supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: | |||
| 'CROSS_CORRELATION' | |||
| :param dtype: support for np.dtype, Default: np.int8 | |||
| :param dtype: support for ``np.dtype``, Default: np.int8 | |||
| :param scale: scale if use quantization, Default: 0.0 | |||
| :param zero_point: scale if use quantization quint8, Default: 0.0 | |||
| :type compute_mode: string or | |||
| :class:`P.Convolution.ComputeMode`. | |||
| :param compute_mode: when set to 'DEFAULT', no special requirements will be | |||
| placed on the precision of intermediate results. When set to 'FLOAT32', | |||
| Float32 would be used for accumulator and intermediate result, but only | |||
| effective when input and output are of Float16 dtype. | |||
| :param compute_mode: when set to "DEFAULT", no special requirements will be | |||
| placed on the precision of intermediate results. When set to "FLOAT32", | |||
| "Float32" would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. | |||
| """ | |||
| ph, pw = _pair(padding) | |||
| @@ -52,6 +52,7 @@ __all__ = [ | |||
| "reshape", | |||
| "remove_axis", | |||
| "split", | |||
| "squeeze", | |||
| "stack", | |||
| "scatter", | |||
| "transpose", | |||
| @@ -64,8 +65,7 @@ __all__ = [ | |||
| def eye(shape, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
| """Returns a 2D tensor with ones on the diagonal and zeros elsewhere. | |||
| :param shape: expected shape of otuput tensor. | |||
| :param m: number of columns. Default: None | |||
| :param shape: expected shape of output tensor. | |||
| :param dtype: data type. Default: None | |||
| :param device: compute node of the matrix. Default: None | |||
| :return: eye matrix. | |||
| @@ -171,7 +171,7 @@ def zeros_like(inp: Tensor) -> Tensor: | |||
| def ones_like(inp: Tensor) -> Tensor: | |||
| """Returns a identity tensor with the same shape as input tensor. | |||
| """Returns a ones tensor with the same shape as input tensor. | |||
| """ | |||
| return ones(inp.shape, dtype=inp.dtype, device=inp.device) | |||
| @@ -183,7 +183,7 @@ def full_like(inp: Tensor, value: Union[int, float]) -> Tensor: | |||
| def identity(inp: Tensor) -> Tensor: | |||
| """Applies an identity transform to the input tensor. | |||
| """Applies an identity transformation to input tensor. | |||
| :param inp: input tensor. | |||
| :return: output tensor. | |||
| @@ -239,8 +239,8 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
| Concat some tensors | |||
| :param inps: input tensors to concat. | |||
| :param axis: dimension over which the tensors are concatenated. Default: 0 | |||
| :param device: comp node output on. Default: None | |||
| :param axis: over which dimension the tensors are concatenated. Default: 0 | |||
| :param device: which device output will be. Default: None | |||
| :return: output tensor. | |||
| Examples: | |||
| @@ -288,7 +288,7 @@ def stack(inps, axis=0, device=None): | |||
| :param inps: input tensors. | |||
| :param axis: which axis will be concatenated. | |||
| :param device: The comp node output on. Default: None | |||
| :param device: the device output will be. Default: None | |||
| :return: output concatenated tensor. | |||
| Examples: | |||
| @@ -329,7 +329,7 @@ def split(inp, nsplits_or_sections, axis=0): | |||
| When nsplits_or_sections is int, the last tensor may be smaller than others. | |||
| :param inp: input tensor. | |||
| :param nsplits_or_sections: number of sub tensors or section information list. | |||
| :param nsplits_or_sections: number of sub tensors or sections information list. | |||
| :param axis: which axis will be splited. | |||
| :return: output tensor list. | |||
| @@ -409,7 +409,7 @@ def _get_idx(index, axis): | |||
| def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
| r"""Gathers data from inp on axis using index. | |||
| r"""Gathers data from input tensor on axis using index. | |||
| For a 3-D tensor, the output is specified by:: | |||
| @@ -417,14 +417,14 @@ def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
| out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1 | |||
| out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2 | |||
| if inp is an n-dimensional tensor with size | |||
| if input tensor is a n-dimensional tensor with size | |||
| :math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i, | |||
| then index must be an n-dimensional tensor with size | |||
| then index must be a n-dimensional tensor with size | |||
| :math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and | |||
| output will have the same size as index. | |||
| :param inp: input tensor. | |||
| :param axis: axis along which to index. | |||
| :param axis: along which axis to index. | |||
| :param index: indices of elements to gather. | |||
| :return: output tensor. | |||
| @@ -480,20 +480,20 @@ def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
| def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||
| r"""Writes all values from the tensor source into inp | |||
| r"""Writes all values from the tensor source into input tensor | |||
| at the indices specified in the index tensor. | |||
| For each value in source, its output index is specified by its index | |||
| in source for ``axis != dimension`` and by the corresponding value in | |||
| index for ``axis = dimension``. | |||
| For a 3-D tensor, inp is updated as:: | |||
| For a 3-D tensor, input tensor is updated as:: | |||
| inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0 | |||
| inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1 | |||
| inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2 | |||
| inp, index and source should have same number of dimensions. | |||
| ``inp``, ``index`` and ``source`` should have same number of dimensions. | |||
| It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)`` | |||
| for all dimensions ``d``. | |||
| @@ -502,10 +502,10 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||
| .. note:: | |||
| Please notice that, due to performance issues, the result is uncertain on the GPU device | |||
| if scatter difference positions from source to the same destination position | |||
| if scattering different positions from source to the same destination position | |||
| regard to index tensor. | |||
| Show the case using the following examples, the oup[0][2] is maybe | |||
| Check the following examples, the oup[0][2] is maybe | |||
| from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339 | |||
| if set the index[1][2] from 1 to 0. | |||
| @@ -591,7 +591,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i | |||
| :param mask: a mask used for choosing x or y. | |||
| :param mask: a mask used for choosing ``x`` or ``y``. | |||
| :param x: first choice. | |||
| :param y: second choice. | |||
| :return: output tensor. | |||
| @@ -647,7 +647,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
| def cond_take(mask: Tensor, x: Tensor) -> Tensor: | |||
| r""" | |||
| Take elements from data if specific condition is satisfied on mask. | |||
| Takes elements from data if specific condition is satisfied on mask. | |||
| This operator has two outputs: the first is the elements taken, | |||
| and the second is the indices corresponding to those elements; | |||
| they are both 1-dimensional. High-dimension input would first be flattened. | |||
| @@ -705,7 +705,7 @@ def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: | |||
| * (2, 0, 1) -> AxBxC to CxAxB | |||
| * (0, ``'x'``, 1) -> AxB to Ax1xB | |||
| * (1, ``'x'``, 0) -> AxB to Bx1xA | |||
| * (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A) | |||
| * (1,) -> this removes dimensions 0. It must be a broadcastable dimension (1xA to A) | |||
| :return: output tensor. | |||
| @@ -743,8 +743,7 @@ def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
| remain unchanged | |||
| :param inp: input tensor. | |||
| :param target_shape: target shape, the components would be concatenated to form the | |||
| target shape, and it can contain an element of -1 representing unspec_axis. | |||
| :param target_shape: target shape, it can contain an element of -1 representing ``unspec_axis``. | |||
| Examples: | |||
| @@ -862,7 +861,7 @@ def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
| return result | |||
| add_axis = add_axis | |||
| expand_dims = add_axis | |||
| def remove_axis( | |||
| @@ -897,6 +896,9 @@ def remove_axis( | |||
| return _remove_axis(inp, axis) | |||
| squeeze = remove_axis | |||
| def linspace( | |||
| start: Union[int, float, Tensor], | |||
| stop: Union[int, float, Tensor], | |||
| @@ -948,7 +950,7 @@ def arange( | |||
| dtype="float32", | |||
| device: Optional[CompNode] = None, | |||
| ) -> Tensor: | |||
| r"""Returns a Tensor with values from start to end with adjacent interval step. | |||
| r"""Returns a tensor with values from start to end with adjacent interval step. | |||
| :param start: starting value of the squence, shoule be scalar. | |||
| :param end: ending value of the squence, shoule be scalar. | |||
| @@ -994,15 +996,15 @@ def arange( | |||
| def param_pack_split(inp: Tensor, offsets: List, shapes: List) -> Tensor: | |||
| r""" | |||
| Returns split Tensor to Tensor list as offsets and shapes described, | |||
| only used for parampack. | |||
| Returns split tensor to tensor list as offsets and shapes described, | |||
| only used for ``parampack``. | |||
| :param inp: input tensor. | |||
| :param offsets: offsets of outputs, length of 2 * n, | |||
| :param offsets: offsets of outputs, length of `2 * n`, | |||
| while n is tensor nums you want to split, | |||
| format `[begin0, end0, begin1, end1]`. | |||
| :param shapes: tensor shapes of outputs. | |||
| :return: split tensors. | |||
| :return: splitted tensors. | |||
| Examples: | |||
| @@ -1035,13 +1037,13 @@ def param_pack_split(inp: Tensor, offsets: List, shapes: List) -> Tensor: | |||
| def param_pack_concat(inps: List, offsets: Tensor, offsets_val: List) -> Tensor: | |||
| r""" | |||
| Returns concat Tensor, only used for parampack. | |||
| Returns concated tensor, only used for ``parampack``. | |||
| :param inps: input tensors. | |||
| :param offsets: device value of offsets. | |||
| :param offsets_val: offsets of inputs, length of 2 * n, | |||
| format [begin0, end0, begin1, end1]. | |||
| :return: concat tensors | |||
| :param offsets_val: offsets of inputs, length of `2 * n`, | |||
| format `[begin0, end0, begin1, end1]`. | |||
| :return: concated tensor. | |||
| Examples: | |||
| @@ -22,7 +22,7 @@ def accuracy( | |||
| logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 | |||
| ) -> Union[Tensor, Iterable[Tensor]]: | |||
| r""" | |||
| Calculate the classification accuracy given predicted logits and ground-truth labels. | |||
| Calculates the classification accuracy given predicted logits and ground-truth labels. | |||
| :param logits: model predictions of shape `[batch_size, num_classes]`, | |||
| representing the probability (likelyhood) of each class. | |||
| @@ -63,25 +63,12 @@ def accuracy( | |||
| return accs | |||
| def zero_grad(inp: Tensor) -> Tensor: | |||
| r""" | |||
| Returns a tensor which is treated as constant during backward gradient calcuation, | |||
| i.e. its gradient is zero. | |||
| :param inp: Input tensor. | |||
| See implementation of :func:`~.softmax` for example. | |||
| """ | |||
| print("zero_grad is obsoleted, please use detach instead") | |||
| raise NotImplementedError | |||
| def copy(inp, cn): | |||
| r""" | |||
| Copy tensor to another device. | |||
| Copies tensor to another device. | |||
| :param inp: input tensor. | |||
| :param cn: device that you copy to. | |||
| :param cn: destination device. | |||
| Examples: | |||
| @@ -19,12 +19,12 @@ class InvalidGitHost(FetcherError): | |||
| class GitPullError(FetcherError): | |||
| """A git pull error occurred""" | |||
| """A git pull error occurred.""" | |||
| class GitCheckoutError(FetcherError): | |||
| """A git checkout error occurred""" | |||
| """A git checkout error occurred.""" | |||
| class InvalidProtocol(FetcherError): | |||
| """The protocol provided was somehow invalid""" | |||
| """The protocol provided was somehow invalid.""" | |||
| @@ -106,20 +106,20 @@ class GitSSHFetcher(RepoFetcherBase): | |||
| :param git_host: | |||
| host address of git repo. | |||
| example: github.com | |||
| Example: github.com | |||
| :param repo_info: | |||
| a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
| tag/branch. The default branch is ``master`` if not specified. | |||
| example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| :param use_cache: | |||
| whether to use locally fetched code or completely re-fetch | |||
| whether to use locally fetched code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param silent: | |||
| whether to accept the stdout and stderr of the subprocess with PIPE, instead of | |||
| displaying on the screen | |||
| displaying on the screen. | |||
| :return: | |||
| directory where the repo code is stored | |||
| directory where the repo code is stored. | |||
| """ | |||
| if not cls._check_git_host(git_host): | |||
| raise InvalidGitHost("git_host: '{}' is malformed.".format(git_host)) | |||
| @@ -215,24 +215,24 @@ class GitHTTPSFetcher(RepoFetcherBase): | |||
| silent: bool = True, | |||
| ) -> str: | |||
| """ | |||
| Fetches git repo by HTTPS protocol | |||
| Fetches git repo by HTTPS protocol. | |||
| :param git_host: | |||
| host address of git repo | |||
| example: github.com | |||
| host address of git repo. | |||
| Example: github.com | |||
| :param repo_info: | |||
| a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
| tag/branch. The default branch is ``master`` if not specified. | |||
| example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| :param use_cache: | |||
| whether to use locally cached code or completely re-fetch | |||
| whether to use locally cached code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param silent: | |||
| whether to accept the stdout and stderr of the subprocess with PIPE, instead of | |||
| displaying on the screen | |||
| displaying on the screen. | |||
| :return: | |||
| directory where the repo code is stored | |||
| directory where the repo code is stored. | |||
| """ | |||
| if not cls._check_git_host(git_host): | |||
| raise InvalidGitHost("git_host: '{}' is malformed.".format(git_host)) | |||
| @@ -94,24 +94,24 @@ def _init_hub( | |||
| commit: str = None, | |||
| protocol: str = DEFAULT_PROTOCOL, | |||
| ): | |||
| """Imports hubmodule like python import | |||
| """Imports hubmodule like python import. | |||
| :param repo_info: | |||
| a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
| tag/branch. The default branch is ``master`` if not specified. | |||
| Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| :param git_host: | |||
| host address of git repo | |||
| host address of git repo. | |||
| Example: github.com | |||
| :param use_cache: | |||
| whether to use locally cached code or completely re-fetch | |||
| whether to use locally cached code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param protocol: | |||
| which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
| The value should be one of HTTPS, SSH. | |||
| :return: | |||
| hubconf.py as a python module | |||
| a python module. | |||
| """ | |||
| cache_dir = os.path.expanduser(os.path.join(_get_megengine_home(), "hub")) | |||
| os.makedirs(cache_dir, exist_ok=True) | |||
| @@ -137,24 +137,24 @@ def list( | |||
| commit: str = None, | |||
| protocol: str = DEFAULT_PROTOCOL, | |||
| ) -> List[str]: | |||
| """Lists all entrypoints available in repo hubconf | |||
| """Lists all entrypoints available in repo hubconf. | |||
| :param repo_info: | |||
| a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
| tag/branch. The default branch is ``master`` if not specified. | |||
| Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| :param git_host: | |||
| host address of git repo | |||
| host address of git repo. | |||
| Example: github.com | |||
| :param use_cache: | |||
| whether to use locally cached code or completely re-fetch | |||
| whether to use locally cached code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param protocol: | |||
| which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
| The value should be one of HTTPS, SSH. | |||
| :return: | |||
| all entrypoint names of the model | |||
| all entrypoint names of the model. | |||
| """ | |||
| hubmodule = _init_hub(repo_info, git_host, use_cache, commit, protocol) | |||
| @@ -182,14 +182,14 @@ def load( | |||
| tag/branch. The default branch is ``master`` if not specified. | |||
| Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
| :param entry: | |||
| an entrypoint defined in hubconf | |||
| an entrypoint defined in hubconf. | |||
| :param git_host: | |||
| host address of git repo | |||
| host address of git repo. | |||
| Example: github.com | |||
| :param use_cache: | |||
| whether to use locally cached code or completely re-fetch | |||
| whether to use locally cached code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param protocol: | |||
| which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
| The value should be one of HTTPS, SSH. | |||
| @@ -217,9 +217,9 @@ def help( | |||
| ) -> str: | |||
| """This function returns docstring of entrypoint ``entry`` by following steps: | |||
| 1. Pull the repo code specified by git and repo_info | |||
| 1. Pull the repo code specified by git and repo_info. | |||
| 2. Load the entry defined in repo's hubconf.py | |||
| 3. Return docstring of function entry | |||
| 3. Return docstring of function entry. | |||
| :param repo_info: | |||
| a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
| @@ -228,17 +228,17 @@ def help( | |||
| :param entry: | |||
| an entrypoint defined in hubconf.py | |||
| :param git_host: | |||
| host address of git repo | |||
| host address of git repo. | |||
| Example: github.com | |||
| :param use_cache: | |||
| whether to use locally cached code or completely re-fetch | |||
| whether to use locally cached code or completely re-fetch. | |||
| :param commit: | |||
| commit id on github or gitlab | |||
| commit id on github or gitlab. | |||
| :param protocol: | |||
| which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
| The value should be one of HTTPS, SSH. | |||
| :return: | |||
| docstring of entrypoint ``entry`` | |||
| docstring of entrypoint ``entry``. | |||
| """ | |||
| hubmodule = _init_hub(repo_info, git_host, use_cache, commit, protocol) | |||
| @@ -255,10 +255,10 @@ def load_serialized_obj_from_url(url: str, model_dir=None) -> Any: | |||
| If the object is already present in ``model_dir``, it's deserialized and | |||
| returned. If no ``model_dir`` is specified, it will be ``MGE_HOME/serialized``. | |||
| :param url: url to serialized object | |||
| :param model_dir: dir to cache target serialized file | |||
| :param url: url to serialized object. | |||
| :param model_dir: dir to cache target serialized file. | |||
| :return: loaded object | |||
| :return: loaded object. | |||
| """ | |||
| if model_dir is None: | |||
| model_dir = os.path.join(_get_megengine_home(), "serialized") | |||
| @@ -15,10 +15,10 @@ from typing import Iterator | |||
| def load_module(name: str, path: str) -> types.ModuleType: | |||
| """ | |||
| Loads module specified by name and path | |||
| Loads module specified by name and path. | |||
| :param name: module name | |||
| :param path: module path | |||
| :param name: module name. | |||
| :param path: module path. | |||
| """ | |||
| spec = importlib.util.spec_from_file_location(name, path) | |||
| module = importlib.util.module_from_spec(spec) | |||
| @@ -27,18 +27,18 @@ def load_module(name: str, path: str) -> types.ModuleType: | |||
| def check_module_exists(module: str) -> bool: | |||
| """Checks whether python module exists or not | |||
| """Checks whether python module exists or not. | |||
| :param module: name of module | |||
| :param module: name of module. | |||
| """ | |||
| return importlib.util.find_spec(module) is not None | |||
| @contextmanager | |||
| def cd(target: str) -> Iterator[None]: | |||
| """Changes current directory to target | |||
| """Changes current directory to target. | |||
| :param target: target directory | |||
| :param target: target directory. | |||
| """ | |||
| prev = os.getcwd() | |||
| os.chdir(os.path.expanduser(target)) | |||
| @@ -20,10 +20,10 @@ class Softmax(Module): | |||
| .. math:: | |||
| \text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} | |||
| It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the | |||
| n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1. | |||
| It is applied to all elements along axis, and rescales elements so that | |||
| they stay in the range `[0, 1]` and sum to 1. | |||
| :param axis: An axis along which softmax will be applied. By default, | |||
| :param axis: Along which axis softmax will be applied. By default, | |||
| softmax will apply along the highest ranked axis. | |||
| Examples: | |||
| @@ -141,8 +141,7 @@ class PReLU(Module): | |||
| \end{cases} | |||
| Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses | |||
| a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, | |||
| a seperate :math:`a` is used for each input channle. | |||
| a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, each input channle will has it's own :math:`a`. | |||
| :param num_parameters: number of :math:`a` to learn, there is only two | |||
| values are legitimate: 1, or the number of channels at input. Default: 1 | |||
| @@ -220,8 +220,8 @@ class BatchNorm2d(_BatchNorm): | |||
| of 0.9. | |||
| If :attr:`track_running_stats` is set to ``False``, this layer will not | |||
| keep running estimates, and batch statistics are instead used during | |||
| evaluation time. | |||
| keep running estimates, batch statistics is used during | |||
| evaluation time instead. | |||
| .. note:: | |||
| This :attr:`momentum` argument is different from one used in optimizer | |||
| @@ -236,15 +236,14 @@ class BatchNorm2d(_BatchNorm): | |||
| Spatial Batch Normalization. | |||
| :type num_features: int | |||
| :param num_features: usually the :math:`C` from an input of size | |||
| :math:`(N, C, H, W)` or the highest ranked dimension of an input with | |||
| :param num_features: usually :math:`C` from an input of shape | |||
| :math:`(N, C, H, W)` or the highest ranked dimension of an input | |||
| less than 4D. | |||
| :type eps: float | |||
| :param eps: a value added to the denominator for numerical stability. | |||
| Default: 1e-5 | |||
| :type momentum: float | |||
| :param momentum: the value used for the `running_mean` and `running_var` | |||
| computation. | |||
| :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. | |||
| Default: 0.9 | |||
| :type affine: bool | |||
| :param affine: a boolean value that when set to True, this module has | |||
| @@ -99,8 +99,8 @@ class Conv2d(_ConvNd): | |||
| \sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k) | |||
| where :math:`\star` is the valid 2D cross-correlation operator, | |||
| :math:`N` is a batch size, :math:`C` denotes a number of channels, | |||
| :math:`H` is a height of input planes in pixels, and :math:`W` is | |||
| :math:`N` is batch size, :math:`C` denotes number of channels, | |||
| :math:`H` is height of input planes in pixels, and :math:`W` is | |||
| width in pixels. | |||
| When `groups == in_channels` and `out_channels == K * in_channels`, | |||
| @@ -120,9 +120,8 @@ class Conv2d(_ConvNd): | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param dilation: dilation of the 2D convolution operation. Default: 1 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a "grouped convolution". When groups is not 1, | |||
| in_channels and out_channels must be divisible by groups, | |||
| :param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
| and there would be an extra dimension at the beginning of the weight's | |||
| shape. Specifically, the shape of weight would be `(groups, | |||
| out_channel // groups, in_channels // groups, *kernel_size)`. | |||
| @@ -130,9 +129,9 @@ class Conv2d(_ConvNd): | |||
| True | |||
| :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | |||
| `CROSS_CORRELATION` | |||
| :param compute_mode: When set to `DEFAULT`, no special requirements will be | |||
| placed on the precision of intermediate results. When set to `FLOAT32`, | |||
| float32 would be used for accumulator and intermediate result, but only | |||
| :param compute_mode: When set to "DEFAULT", no special requirements will be | |||
| placed on the precision of intermediate results. When set to "FLOAT32", | |||
| "Float32" would be used for accumulator and intermediate result, but only | |||
| effective when input and output are of float16 dtype. | |||
| Examples: | |||
| @@ -236,7 +235,7 @@ class ConvTranspose2d(_ConvNd): | |||
| r"""Applies a 2D transposed convolution over an input tensor. | |||
| This module is also known as a deconvolution or a fractionally-strided convolution. | |||
| :class:`ConvTranspose2d` can ben seen as the gradient of :class:`Conv2d` operation | |||
| :class:`ConvTranspose2d` can be seen as the gradient of :class:`Conv2d` operation | |||
| with respect to its input. | |||
| Convolution usually reduces the size of input, while transposed convolution works | |||
| @@ -252,8 +251,7 @@ class ConvTranspose2d(_ConvNd): | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param dilation: dilation of the 2D convolution operation. Default: 1 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
| :param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
| and there would be an extra dimension at the beginning of the weight's | |||
| shape. Specifically, the shape of weight would be ``(groups, | |||
| @@ -262,9 +260,9 @@ class ConvTranspose2d(_ConvNd): | |||
| True | |||
| :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | |||
| `CROSS_CORRELATION` | |||
| :param compute_mode: When set to `DEFAULT`, no special requirements will be | |||
| placed on the precision of intermediate results. When set to `FLOAT32`, | |||
| float32 would be used for accumulator and intermediate result, but only | |||
| :param compute_mode: When set to "DEFAULT", no special requirements will be | |||
| placed on the precision of intermediate results. When set to "FLOAT32", | |||
| "Float32" would be used for accumulator and intermediate result, but only | |||
| effective when input and output are of float16 dtype. | |||
| """ | |||
| @@ -342,7 +340,7 @@ class ConvTranspose2d(_ConvNd): | |||
| class LocalConv2d(Conv2d): | |||
| r"""Applies a spatial convolution with untied kernels over an input 4D tensor. | |||
| r"""Applies a spatial convolution with unshared kernels over an input 4D tensor. | |||
| It is also known as the locally connected layer. | |||
| :param in_channels: number of input channels. | |||
| @@ -355,9 +353,9 @@ class LocalConv2d(Conv2d): | |||
| :param stride: stride of the 2D convolution operation. Default: 1 | |||
| :param padding: size of the paddings added to the input on both sides of its | |||
| spatial dimensions. Only zero-padding is supported. Default: 0 | |||
| :param groups: number of groups to divide input and output channels into, | |||
| so as to perform a "grouped convolution". When groups is not 1, | |||
| in_channels and out_channels must be divisible by groups. | |||
| :param groups: number of groups into which the input and output channels are divided, | |||
| so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
| ``in_channels`` and ``out_channels`` must be divisible by ``groups``. | |||
| The shape of weight is `(groups, output_height, output_width, | |||
| in_channels // groups, *kernel_size, out_channels // groups)`. | |||
| """ | |||
| @@ -11,7 +11,7 @@ from .module import Module | |||
| class Dropout(Module): | |||
| r"""Randomly set input elements to zeros with the probability :math:`drop\_prob` during training. | |||
| r"""Randomly sets input elements to zeros with the probability :math:`drop\_prob` during training. | |||
| Commonly used in large networks to prevent overfitting. | |||
| Note that we perform dropout only during training, we also rescale(multiply) the output tensor | |||
| by :math:`\frac{1}{1 - drop\_prob}`. During inference :class:`~.Dropout` is equal to :class:`~.Identity`. | |||
| @@ -26,9 +26,9 @@ class Embedding(Module): | |||
| :param num_embeddings: size of embedding dictionary. | |||
| :param embedding_dim: size of each embedding vector. | |||
| :param padding_idx: should be set to None, not support now. | |||
| :param max_norm: should be set to None, not support now. | |||
| :param norm_type: should be set to None, not support now. | |||
| :param padding_idx: should be set to None, not supportted now. | |||
| :param max_norm: should be set to None, not supportted now. | |||
| :param norm_type: should be set to None, not supportted now. | |||
| :param initial_weight: the learnable weights of the module of shape (num_embeddings, embedding_dim). | |||
| Examples: | |||
| @@ -121,8 +121,8 @@ class Embedding(Module): | |||
| r""" | |||
| Creates Embedding instance from given 2-dimensional FloatTensor. | |||
| :param embeddings: Tensor contained weight for the embedding. | |||
| :param freeze: If ``True``, the weight does not get updated during the learning process. Default: ``True``. | |||
| :param embeddings: tensor contained weight for the embedding. | |||
| :param freeze: if ``True``, the weight does not get updated during the learning process. Default: True. | |||
| :param padding_idx: should be set to None, not support Now. | |||
| :param max_norm: should be set to None, not support Now. | |||
| :param norm_type: should be set to None, not support Now. | |||
| @@ -18,48 +18,48 @@ from ..tensor import Tensor | |||
| def fill_(tensor: Tensor, val: Union[float, int]) -> None: | |||
| """Fill the given ``tensor`` with value ``val``. | |||
| """Fills the given ``tensor`` with value ``val``. | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param val: The value to be filled throughout the tensor | |||
| :param tensor: tensor to be initialized. | |||
| :param val: value to be filled throughout the tensor. | |||
| """ | |||
| tensor._reset(full(shape=tensor.shape, value=val, dtype=tensor.dtype)) | |||
| def zeros_(tensor: Tensor) -> None: | |||
| """Fill the given ``tensor`` with scalar value `0`. | |||
| """Fills the given ``tensor`` with scalar value `0`. | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param tensor: tensor to be initialized. | |||
| """ | |||
| fill_(tensor, 0) | |||
| def ones_(tensor: Tensor) -> None: | |||
| """Fill the given ``tensor`` with the scalar value `1`. | |||
| """Fills the given ``tensor`` with the scalar value `1`. | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param tensor: tensor to be initialized. | |||
| """ | |||
| fill_(tensor, 1) | |||
| def uniform_(tensor: Tensor, a: float = 0.0, b: float = 1.0) -> None: | |||
| r"""Fill the given ``tensor`` with random value sampled from uniform distribution | |||
| r"""Fills the given ``tensor`` with random value sampled from uniform distribution | |||
| :math:`\mathcal{U}(\text{a}, \text{b})`. | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param a: Lower bound of the sampling interval | |||
| :param b: Upper bound of the sampling interval | |||
| :param tensor: tensor to be initialized. | |||
| :param a: lower bound of the sampling interval. | |||
| :param b: upper bound of the sampling interval. | |||
| """ | |||
| tensor._reset(uniform(size=tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||
| def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
| r"""Fill the given ``tensor`` with random value sampled from normal distribution | |||
| r"""Fills the given ``tensor`` with random value sampled from normal distribution | |||
| :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param mean: The mean of the normal distribution | |||
| :param std: The standard deviation of the normal distribution | |||
| :param tensor: tensor to be initialized. | |||
| :param mean: mean of the normal distribution. | |||
| :param std: standard deviation of the normal distribution. | |||
| """ | |||
| tensor._reset(normal(size=tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||
| @@ -67,7 +67,7 @@ def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
| def calculate_gain( | |||
| nonlinearity: str, param: Optional[Union[int, float]] = None | |||
| ) -> float: | |||
| r"""Return a recommended gain value (see the table below) for the given nonlinearity | |||
| r"""Returns a recommended gain value (see the table below) for the given nonlinearity | |||
| function. | |||
| ================= ==================================================== | |||
| @@ -81,8 +81,8 @@ def calculate_gain( | |||
| Leaky Relu :math:`\sqrt{\frac{2}{1 + {\text{negative}_\text{slope}}^2}}` | |||
| ================= ==================================================== | |||
| :param nonlinearity: Name of the non-linear function | |||
| :param param: Optional parameter for leaky_relu. Only effective when | |||
| :param nonlinearity: name of the non-linear function. | |||
| :param param: optional parameter for leaky_relu. Only effective when | |||
| ``nonlinearity`` is "leaky_relu". | |||
| """ | |||
| @@ -119,10 +119,10 @@ def calculate_gain( | |||
| def calculate_fan_in_and_fan_out(tensor: Tensor) -> Tuple[float, float]: | |||
| """ | |||
| Calculate fan_in / fan_out value for given weight tensor. This function assumes | |||
| input tensor is stored in NCHW format. | |||
| Calculates fan_in / fan_out value for given weight tensor. This function assumes | |||
| input tensor is stored in ``NCHW`` format. | |||
| :param tensor: Weight tensor in NCHW format | |||
| :param tensor: weight tensor in ``NCHW`` format. | |||
| """ | |||
| shape = tensor.shape | |||
| ndim = len(shape) | |||
| @@ -148,13 +148,13 @@ def calculate_fan_in_and_fan_out(tensor: Tensor) -> Tuple[float, float]: | |||
| def calculate_correct_fan(tensor: Tensor, mode: str) -> float: | |||
| """ | |||
| Calculate fan_in or fan_out value for given weight tensor, depending on given | |||
| Calculates fan_in / fan_out value for given weight tensor, depending on given | |||
| ``mode``. | |||
| See :func:`calculate_fan_in_and_fan_out` for details. | |||
| :param tensor: Weight tensor in NCHW format | |||
| :param mode: ``'fan_in'`` or ``'fan_out'`` | |||
| :param tensor: weight tensor in ``NCHW`` format. | |||
| :param mode: "fan_in" or "fan_out". | |||
| """ | |||
| mode = mode.lower() | |||
| valid_modes = ["fan_in", "fan_out"] | |||
| @@ -168,7 +168,7 @@ def calculate_correct_fan(tensor: Tensor, mode: str) -> float: | |||
| def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| r"""Fill ``tensor`` with random values sampled from :math:`\mathcal{U}(-a, a)` | |||
| r"""Fills tensor with random values sampled from :math:`\mathcal{U}(-a, a)` | |||
| where | |||
| .. math:: | |||
| @@ -178,8 +178,8 @@ def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| `Understanding the difficulty of training deep feedforward neural networks` - | |||
| Glorot, X. & Bengio, Y. (2010). | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param gain: Scaling factor for :math:`a`. | |||
| :param tensor: tensor to be initialized. | |||
| :param gain: scaling factor for :math:`a`. | |||
| """ | |||
| fan_in, fan_out = calculate_fan_in_and_fan_out(tensor) | |||
| std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) | |||
| @@ -188,7 +188,7 @@ def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| r"""Fill ``tensor`` with random values sampled from | |||
| r"""Fills tensor with random values sampled from | |||
| :math:`\mathcal{N}(0, \text{std}^2)` where | |||
| .. math:: | |||
| @@ -198,8 +198,8 @@ def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| `Understanding the difficulty of training deep feedforward neural networks` - | |||
| Glorot, X. & Bengio, Y. (2010). | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param gain: Scaling factor for :math:`std`. | |||
| :param tensor: tensor to be initialized. | |||
| :param gain: scaling factor for :math:`std`. | |||
| """ | |||
| fan_in, fan_out = calculate_fan_in_and_fan_out(tensor) | |||
| std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) | |||
| @@ -209,7 +209,7 @@ def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
| def msra_uniform_( | |||
| tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu" | |||
| ) -> None: | |||
| r"""Fill ``tensor`` wilth random values sampled from | |||
| r"""Fills tensor wilth random values sampled from | |||
| :math:`\mathcal{U}(-\text{bound}, \text{bound})` where | |||
| .. math:: | |||
| @@ -219,13 +219,13 @@ def msra_uniform_( | |||
| `Delving deep into rectifiers: Surpassing human-level performance on ImageNet | |||
| classification` | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param a: Optional parameter for calculating gain for leaky_relu. See | |||
| :param tensor: tensor to be initialized. | |||
| :param a: optional parameter for calculating gain for leaky_relu. See | |||
| :func:`calculate_gain` for details. | |||
| :param mode: ``'fan_in'`` or ``'fan_out'``, used to calculate :math:`gain`, the | |||
| :param mode: "fan_in" or "fan_out", used to calculate :math:`gain`, the | |||
| scaling factor for :math:`bound`. See :func:`calculate_fan_in_and_fan_out` for | |||
| details. | |||
| :param nonlinearity: Name of the non-linear function used to calculate :math:`gain`. | |||
| :param nonlinearity: name of the non-linear function used to calculate :math:`gain`. | |||
| See :func:`calculate_gain` for details. | |||
| """ | |||
| fan = calculate_correct_fan(tensor, mode) | |||
| @@ -238,7 +238,7 @@ def msra_uniform_( | |||
| def msra_normal_( | |||
| tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu" | |||
| ) -> None: | |||
| r"""Fill ``tensor`` wilth random values sampled from | |||
| r"""Fills tensor wilth random values sampled from | |||
| :math:`\mathcal{N}(0, \text{std}^2)` where | |||
| .. math:: | |||
| @@ -248,13 +248,13 @@ def msra_normal_( | |||
| `Delving deep into rectifiers: Surpassing human-level performance on ImageNet | |||
| classification` | |||
| :param tensor: An n-dimentional tensor to be initialized | |||
| :param a: Optional parameter for calculating gain for leaky_relu. See | |||
| :param tensor: tensor to be initialized | |||
| :param a: optional parameter for calculating gain for leaky_relu. See | |||
| :func:`calculate_gain` for details. | |||
| :param mode: ``'fan_in'`` or ``'fan_out'``, used to calculate :math:`gain`, the | |||
| :param mode: "fan_in" or "fan_out", used to calculate :math:`gain`, the | |||
| scaling factor for :math:`gain`. See :func:`calculate_fan_in_and_fan_out` for | |||
| details. | |||
| :param nonlinearity: Name of the non-linear function used to calculate :math:`gain`. | |||
| :param nonlinearity: name of the non-linear function used to calculate :math:`gain`. | |||
| See :func:`calculate_gain` for details. | |||
| """ | |||
| fan = calculate_correct_fan(tensor, mode) | |||
| @@ -25,7 +25,7 @@ class Linear(Module): | |||
| :param in_features: size of each input sample. | |||
| :param out_features: size of each output sample. | |||
| :param bias: If set to ``False``, the layer will not learn an additive bias. | |||
| :param bias: if it's ``False``, the layer will not learn an additional ``bias``. | |||
| Default: ``True`` | |||
| Examples: | |||
| @@ -76,9 +76,7 @@ class Module(metaclass=ABCMeta): | |||
| pass | |||
| def register_forward_pre_hook(self, hook: Callable) -> HookHandler: | |||
| """Register a hook to handle forward inputs. `hook` should be a function | |||
| Note that `inputs` keyword inputs | |||
| """Registers a hook to handle forward inputs. `hook` should be a function. | |||
| :param hook: a function that receive `module` and `inputs`, then return | |||
| a modified `inputs` or `None`. | |||
| @@ -87,7 +85,7 @@ class Module(metaclass=ABCMeta): | |||
| return HookHandler(self._forward_pre_hooks, hook) | |||
| def register_forward_hook(self, hook: Callable) -> HookHandler: | |||
| """Register a hook to handle forward results. `hook` should be a function that | |||
| """Registers a hook to handle forward results. `hook` should be a function that | |||
| receive `module`, `inputs` and `outputs`, then return a modified `outputs` or `None`. | |||
| This method return a handler with :meth:`~.HookHandler.remove` interface to delete the hook. | |||
| @@ -126,12 +124,12 @@ class Module(metaclass=ABCMeta): | |||
| returned iterable is guaranteed to be identical, as long as all the involved | |||
| module objects' ``__dict__`` does not change thoughout those calls. | |||
| :param recursive: Whether to recursively scan all the submodules. | |||
| :param with_key: Whether to yield keys along with yielded objects. | |||
| :param with_parent: Whether to yield ``self`` along with yielded objects. | |||
| :param prefix: The prefix appended to the yielded keys. | |||
| :param predicate: The predicate function applied to scanned objects. | |||
| :param seen: A dict that records whether a module has been traversed yet. | |||
| :param recursive: whether to recursively scan all the submodules. | |||
| :param with_key: whether to yield keys along with yielded objects. | |||
| :param with_parent: whether to yield ``self`` along with yielded objects. | |||
| :param prefix: prefix appended to the yielded keys. | |||
| :param predicate: the predication function applied to scanned objects. | |||
| :param seen: a dict that records whether a module has been traversed yet. | |||
| """ | |||
| if seen is None: | |||
| seen = set([id(self)]) | |||
| @@ -193,10 +191,10 @@ class Module(metaclass=ABCMeta): | |||
| self, prefix: Optional[str] = None, recursive: bool = True, **kwargs | |||
| ) -> Iterable[Tuple[str, Parameter]]: | |||
| """Returns an iterable for key :class:`~.Parameter` pairs of the module, where | |||
| ``key`` is the dotted path from this module to the :class:`~.Parameter` . | |||
| ``key`` is the dotted path from this module to the :class:`~.Parameter`. | |||
| :param prefix: The prefix prepended to the keys. | |||
| :param recursive: If ``True``, returns all :class:`~.Parameter` within this | |||
| :param prefix: prefix prepended to the keys. | |||
| :param recursive: if ``True``, returns all :class:`~.Parameter` within this | |||
| module, else only returns :class:`~.Parameter` that are direct attributes | |||
| of this module. | |||
| """ | |||
| @@ -225,7 +223,7 @@ class Module(metaclass=ABCMeta): | |||
| Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||
| :param recursive: If ``True``, returns all buffers within this | |||
| :param recursive: if ``True``, returns all buffers within this | |||
| module, else only returns buffers that are direct attributes | |||
| of this module. | |||
| """ | |||
| @@ -241,8 +239,8 @@ class Module(metaclass=ABCMeta): | |||
| Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||
| :param prefix: The prefix prepended to the keys. | |||
| :param recursive: If ``True``, returns all buffers within this | |||
| :param prefix: prefix prepended to the keys. | |||
| :param recursive: if ``True``, returns all buffers within this | |||
| module, else only returns buffers that are direct attributes | |||
| of this module. | |||
| """ | |||
| @@ -287,7 +285,7 @@ class Module(metaclass=ABCMeta): | |||
| module, including itself, where 'key' is the dotted path from this module to the | |||
| submodules. | |||
| :param prefix: The prefix prepended to the path. | |||
| :param prefix: prefix prepended to the path. | |||
| """ | |||
| if "with_parent" in kwargs and kwargs["with_parent"]: | |||
| yield ("" if prefix is None else prefix), self, None | |||
| @@ -298,24 +296,24 @@ class Module(metaclass=ABCMeta): | |||
| ) | |||
| def apply(self, fn: "Callable[[Module], Any]") -> None: | |||
| """Apply function ``fn`` to all the modules within this module, including | |||
| """Applies function ``fn`` to all the modules within this module, including | |||
| itself. | |||
| :param fn: The function to be applied on modules. | |||
| :param fn: the function to be applied on modules. | |||
| """ | |||
| for it in self.modules(): | |||
| fn(it) | |||
| @deprecated(version="1.0") | |||
| def zero_grad(self) -> None: | |||
| """Set all parameters' grads to zero | |||
| """Sets all parameters' grads to zero | |||
| """ | |||
| for param in self.parameters(): | |||
| if param.grad is not None: | |||
| param.grad.reset_zero() | |||
| def train(self, mode: bool = True, recursive: bool = True) -> None: | |||
| """Set training mode of all the modules within this module (including itself) to | |||
| """Sets training mode of all the modules within this module (including itself) to | |||
| ``mode``. This effectively sets the ``training`` attributes of those modules | |||
| to ``mode``, but only has effect on certain modules (e.g. | |||
| :class:`~.BatchNorm2d`, :class:`~.Dropout`, :class:`~.Observer`) | |||
| @@ -333,14 +331,14 @@ class Module(metaclass=ABCMeta): | |||
| self.apply(fn) | |||
| def eval(self) -> None: | |||
| """Set training mode of all the modules within this module (including itself) to | |||
| """Sets training mode of all the modules within this module (including itself) to | |||
| ``False``. See :meth:`~.Module.train` for details. | |||
| """ | |||
| self.train(False) | |||
| def disable_quantize(self, value=True): | |||
| r""" | |||
| Set ``module``'s ``quantize_disabled`` attribute and return ``module``. | |||
| Sets ``module``'s ``quantize_disabled`` attribute and return ``module``. | |||
| Could be used as a decorator. | |||
| """ | |||
| @@ -353,7 +351,7 @@ class Module(metaclass=ABCMeta): | |||
| def replace_param( | |||
| self, params: dict, start_pos: int, seen: Optional[Set[int]] = None | |||
| ): | |||
| """Replace module's parameters with `params`, used by :class:`~.ParamPack` to | |||
| """Replaces module's parameters with `params`, used by :class:`~.ParamPack` to | |||
| speedup multimachine training. | |||
| """ | |||
| offset = 0 | |||
| @@ -409,7 +407,7 @@ class Module(metaclass=ABCMeta): | |||
| state_dict: Union[dict, Callable[[str, Tensor], Optional[np.ndarray]]], | |||
| strict=True, | |||
| ): | |||
| r"""Load a given dictionary created by :func:`state_dict` into this module. | |||
| r"""Loads a given dictionary created by :func:`state_dict` into this module. | |||
| If ``strict`` is ``True``, the keys of :func:`state_dict` must exactly match the keys | |||
| returned by :func:`state_dict`. | |||
| @@ -18,7 +18,7 @@ class Linear(Float.Linear, QATModule): | |||
| :param in_features: size of each input sample. | |||
| :param out_features: size of each output sample. | |||
| :param bias: If set to ``False``, the layer will not learn an additive bias. | |||
| Default: ``True`` | |||
| Default: True | |||
| """ | |||
| @@ -15,7 +15,7 @@ from .module import QuantizedModule | |||
| class Concat(QuantizedModule): | |||
| r""" | |||
| A :class:`~.QuantizedModule` to do quantized concat, inference only. | |||
| A :class:`~.QuantizedModule` to do quantized concat, used for inference only. | |||
| """ | |||
| def __init__(self, dtype=None): | |||
| @@ -29,7 +29,7 @@ class Concat(QuantizedModule): | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT.Concat): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| return cls(qat_module.get_activation_dtype()) | |||
| @@ -18,10 +18,10 @@ from .module import QuantizedModule | |||
| class Conv2d(Float.Conv2d, QuantizedModule): | |||
| r"""quantized version of :class:`~.qat.conv.Conv2d`.""" | |||
| r"""Applies a 2D convolution over an quantized input tensor, inference only. | |||
| r"""Quantized version of :class:`~.qat.conv.Conv2d`.""" | |||
| r"""Applies a 2D convolution over a quantized input tensor, used for inference only. | |||
| The parameter is same with :class: `~.Conv2d` | |||
| The parameter is same with :class: `~.Conv2d`. | |||
| """ | |||
| def __init__( | |||
| @@ -101,7 +101,7 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
| class ConvRelu2d(Conv2d): | |||
| r"""quantized version of :class:`~.qat.conv.ConvRelu2d`.""" | |||
| r"""Quantized version of :class:`~.qat.conv.ConvRelu2d`.""" | |||
| def forward(self, inp): | |||
| return self.calc_conv_quantized(inp, nonlinear_mode="RELU") | |||
| @@ -11,15 +11,15 @@ from .conv import Conv2d | |||
| class _ConvBnActivation2d(Conv2d): | |||
| r"""Applies a 2D convolution over an quantized input tensor, inference only. | |||
| r"""Applies a 2D convolution over a quantized input tensor, used for inference only. | |||
| The parameter is same with :class: `~.Conv2d` | |||
| The parameter is same with :class: `~.Conv2d`. | |||
| """ | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT._ConvBnActivation2d): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| output_dtype = qat_module.get_activation_dtype() | |||
| @@ -43,14 +43,14 @@ class _ConvBnActivation2d(Conv2d): | |||
| class ConvBn2d(_ConvBnActivation2d): | |||
| r"""quantized version of :class:`~.qat.conv_bn.ConvBn2d`.""" | |||
| r"""Quantized version of :class:`~.qat.conv_bn.ConvBn2d`.""" | |||
| def forward(self, inp): | |||
| return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") | |||
| class ConvBnRelu2d(_ConvBnActivation2d): | |||
| r"""quantized version of :class:`~.qat.conv_bn.ConvBnRelu2d`.""" | |||
| r"""Quantized version of :class:`~.qat.conv_bn.ConvBnRelu2d`.""" | |||
| def forward(self, inp): | |||
| return self.calc_conv_quantized(inp, nonlinear_mode="RELU") | |||
| @@ -13,7 +13,7 @@ from .module import QuantizedModule | |||
| class Elemwise(QuantizedModule): | |||
| r"""quantized version of :class:`~.qat.elemwise.Elemwise`.""" | |||
| r"""Quantized version of :class:`~.qat.elemwise.Elemwise`.""" | |||
| _elemwise_multi_type_mode = P.ElemwiseMultiType.Mode | |||
| @@ -30,7 +30,7 @@ class Elemwise(QuantizedModule): | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT.Elemwise): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| return cls(qat_module.method.name, qat_module.get_activation_dtype()) | |||
| @@ -15,7 +15,7 @@ from .module import QuantizedModule | |||
| class Linear(QuantizedModule): | |||
| r"""quantized version of :class:`~.qat.linear.Linear`.""" | |||
| r"""Quantized version of :class:`~.qat.linear.Linear`.""" | |||
| def __init__( | |||
| self, dtype: np.dtype = None, | |||
| @@ -40,7 +40,7 @@ class Linear(QuantizedModule): | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT.Linear): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| output_dtype = qat_module.get_activation_dtype() | |||
| @@ -26,6 +26,6 @@ class QuantizedModule(Module): | |||
| @abstractmethod | |||
| def from_qat_module(cls, qat_module: QATModule): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| @@ -11,7 +11,7 @@ from .module import QuantizedModule | |||
| class QuantStub(QuantizedModule): | |||
| r""" | |||
| quantized version of :class:`~.qat.quant_dequant.QuantStub`, | |||
| Quantized version of :class:`~.qat.quant_dequant.QuantStub`, | |||
| will convert input to quantized dtype. | |||
| """ | |||
| @@ -25,7 +25,7 @@ class QuantStub(QuantizedModule): | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT.QuantStub): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| return cls(qat_module.get_activation_dtype()) | |||
| @@ -33,7 +33,7 @@ class QuantStub(QuantizedModule): | |||
| class DequantStub(QuantizedModule): | |||
| r""" | |||
| quantized version of :class:`~.qat.quant_dequant.DequantStub`, | |||
| Quantized version of :class:`~.qat.quant_dequant.DequantStub`, | |||
| will restore quantized input to float32 dtype. | |||
| """ | |||
| @@ -43,7 +43,7 @@ class DequantStub(QuantizedModule): | |||
| @classmethod | |||
| def from_qat_module(cls, qat_module: QAT.DequantStub): | |||
| r""" | |||
| return a :class:`~.QuantizedModule` instance converted from a | |||
| Return a :class:`~.QuantizedModule` instance converted from a | |||
| :class:`~.QATModule` instance. | |||
| """ | |||
| return cls() | |||
| @@ -22,13 +22,13 @@ class Adadelta(Optimizer): | |||
| :param params: iterable of parameters to optimize or dicts defining | |||
| parameter groups. | |||
| :param lr: coefficient that scale delta before it is applied | |||
| to the parameters (default: 1.0). | |||
| :param lr: coefficient that scales delta before it is applied | |||
| to the parameters. Default: 1.0 | |||
| :param rho: coefficient used for computing a running average | |||
| of squared gradients (default: 0.9). | |||
| of squared gradients. Default: 0.9 | |||
| :param eps: term added to the denominator to improve | |||
| numerical stability (default: 1e-6). | |||
| :param weight_decay: weight decay (L2 penalty) (default: 0). | |||
| numerical stability. Default: 1e-6 | |||
| :param weight_decay: weight decay (L2 penalty). Default: 0 | |||
| """ | |||
| def __init__( | |||
| @@ -23,12 +23,12 @@ class Adagrad(Optimizer): | |||
| :param params: iterable of parameters to optimize or dicts defining | |||
| parameter groups. | |||
| :param lr: coefficient that scale delta before it is applied | |||
| to the parameters (default: 1e-2). | |||
| :param lr_decay: learning rate decay (default: 0) | |||
| :param lr: coefficient that scales delta before it is applied | |||
| to the parameters. Default: 1e-2 | |||
| :param lr_decay: learning rate decay. Default: 0 | |||
| :param eps: term added to the denominator to improve | |||
| numerical stability (default: 1e-10). | |||
| :param weight_decay: weight decay (L2 penalty) (default: 0). | |||
| numerical stability. Default: 1e-10 | |||
| :param weight_decay: weight decay (L2 penalty). Default: 0 | |||
| """ | |||
| def __init__( | |||
| @@ -14,8 +14,8 @@ from .optimizer import Optimizer | |||
| class LRScheduler(metaclass=ABCMeta): | |||
| r"""Base class for all learning rate based schedulers. | |||
| :param optimizer: Wrapped optimizer. | |||
| :param current_epoch: The index of current epoch. Default: -1 | |||
| :param optimizer: wrapped optimizer. | |||
| :param current_epoch: the index of current epoch. Default: -1 | |||
| """ | |||
| def __init__( # pylint: disable=too-many-branches | |||
| @@ -53,7 +53,8 @@ class LRScheduler(metaclass=ABCMeta): | |||
| def load_state_dict(self, state_dict): | |||
| r"""Loads the schedulers state. | |||
| :param state_dict (dict): scheduler state. | |||
| :type state_dict: dict | |||
| :param state_dict: scheduler state. | |||
| """ | |||
| raise NotImplementedError | |||
| @@ -17,10 +17,12 @@ class MultiStepLR(LRScheduler): | |||
| r"""Decays the learning rate of each parameter group by gamma once the | |||
| number of epoch reaches one of the milestones. | |||
| :param optimizer: Wrapped optimizer. | |||
| :param milestones (list): List of epoch indices. Must be increasing. | |||
| :param gamma (float): Multiplicative factor of learning rate decay. Default: 0.1. | |||
| :param current_epoch: The index of current epoch. Default: -1. | |||
| :param optimizer: wrapped optimizer. | |||
| :type milestones: list | |||
| :param milestones: list of epoch indices which should be increasing. | |||
| :type gamma: float | |||
| :param gamma: multiplicative factor of learning rate decay. Default: 0.1 | |||
| :param current_epoch: the index of current epoch. Default: -1 | |||
| """ | |||
| def __init__( | |||
| @@ -55,7 +57,8 @@ class MultiStepLR(LRScheduler): | |||
| def load_state_dict(self, state_dict): | |||
| r"""Loads the schedulers state. | |||
| :param state_dict (dict): scheduler state. | |||
| :type state_dict: dict | |||
| :param state_dict: scheduler state. | |||
| """ | |||
| tmp_dict = {} | |||
| for key in ["milestones", "gamma", "current_epoch"]: | |||
| @@ -22,10 +22,10 @@ class _FakeQuantize(Module): | |||
| r""" | |||
| A Basic Fake Quant module. | |||
| :param dtype: A string indicating the target quantization type of input. | |||
| :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| :param dtype: a string indicating the target quantization type of input. | |||
| :param narrow_range: whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| instead of 1 greater. Usually True for weight and False for activation. | |||
| :param enable: Whether do ``normal_forward`` or ``fake_quant_forward``. | |||
| :param enable: whether do ``normal_forward`` or ``fake_quant_forward``. | |||
| """ | |||
| def __init__(self, dtype: str, narrow_range: bool = False, enable: bool = True): | |||
| @@ -21,8 +21,8 @@ class Observer(Module): | |||
| r""" | |||
| A base class for Observer Module. | |||
| :param dtype: a string indicating to collect scale and zero_point of which dtype | |||
| :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| :param dtype: a string indicating to collect scale and zero_point of which dtype. | |||
| :param narrow_range: whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| instead of 1 greater. Usually True for weight and False for activation. | |||
| """ | |||
| @@ -63,7 +63,7 @@ qparam_dict = { | |||
| def get_qparam_dict(mode: QuantMode): | |||
| """Return the quantization parameters dictory according to the mode. | |||
| """Return the quantization parameters dictionary according to the mode. | |||
| """ | |||
| return qparam_dict.get(mode, None) | |||
| @@ -91,7 +91,7 @@ def fake_quant_tensor(inp: Tensor, qmin: int, qmax: int, q_dict: Dict) -> Tensor | |||
| def fake_quant_bias(bias: Tensor, inp: Tensor, w_qat: Tensor) -> Tensor: | |||
| """Apply fake quantization to bias, the special scale from input tensor | |||
| """Apply fake quantization to bias, with the special scale from input tensor | |||
| and weight tensor, the quantized type set to qint32 also. | |||
| :param bias: the bias tensor which need to be faked. | |||
| @@ -21,12 +21,12 @@ __all__ = ["normal", "uniform"] | |||
| def normal( | |||
| mean: float = 0, std: float = 1, size: Optional[Iterable[int]] = None | |||
| ) -> Tensor: | |||
| r"""Random variable with Gaussian distribution $N(\mu, \sigma)$ | |||
| r"""Random variable with Gaussian distribution :math:`N(\mu, \sigma)`. | |||
| :param size: Output tensor size | |||
| :param mean: The mean or expectation of the distribution | |||
| :param std: The standard deviation of the distribution (variance = $\sigma ^ 2$) | |||
| :return: The output tensor | |||
| :param size: output tensor size. | |||
| :param mean: the mean or expectation of the distribution. | |||
| :param std: the standard deviation of the distribution (variance = :math:`\sigma ^ 2`). | |||
| :return: the output tensor. | |||
| Examples: | |||
| @@ -59,12 +59,12 @@ def normal( | |||
| def uniform( | |||
| low: float = 0, high: float = 1, size: Optional[Iterable[int]] = None | |||
| ) -> Tensor: | |||
| r"""Random variable with uniform distribution $U(0, 1)$ | |||
| r"""Random variable with uniform distribution $U(0, 1)$. | |||
| :param size: Output tensor size | |||
| :param low: Lower range | |||
| :param high: Upper range | |||
| :return: The output tensor | |||
| :param size: output tensor size. | |||
| :param low: lower range. | |||
| :param high: upper range. | |||
| :return: the output tensor. | |||
| Examples: | |||
| @@ -23,16 +23,16 @@ HTTP_CONNECTION_TIMEOUT = 5 | |||
| class HTTPDownloadError(BaseException): | |||
| """The class that represents http request error""" | |||
| """The class that represents http request error.""" | |||
| def download_from_url(url: str, dst: str, http_read_timeout=120): | |||
| """ | |||
| Downloads file from given url to ``dst`` | |||
| Downloads file from given url to ``dst``. | |||
| :param url: source URL | |||
| :param dst: saving path | |||
| :param http_read_timeout: how many seconds to wait for data before giving up | |||
| :param url: source URL. | |||
| :param dst: saving path. | |||
| :param http_read_timeout: how many seconds to wait for data before giving up. | |||
| """ | |||
| dst = os.path.expanduser(dst) | |||
| dst_dir = os.path.dirname(dst) | |||
| @@ -73,6 +73,6 @@ _max_recursion_limit_context_manager = AlternativeRecursionLimit(2 ** 31 - 1) | |||
| def max_recursion_limit(): | |||
| r"""Sets recursion limit to the max possible value | |||
| r"""Sets recursion limit to the max possible value. | |||
| """ | |||
| return _max_recursion_limit_context_manager | |||
| @@ -12,13 +12,13 @@ import numpy as np | |||
| def load_tensor_binary(fobj): | |||
| """load a tensor dumped by the :class:`BinaryOprIODump` plugin; the actual | |||
| """Load a tensor dumped by the :class:`BinaryOprIODump` plugin; the actual | |||
| tensor value dump is implemented by ``mgb::debug::dump_tensor``. | |||
| Multiple values can be compared by ``tools/compare_binary_iodump.py``. | |||
| :param fobj: file object, or a string that contains the file name | |||
| :return: tuple ``(tensor_value, tensor_name)`` | |||
| :param fobj: file object, or a string that contains the file name. | |||
| :return: tuple ``(tensor_value, tensor_name)``. | |||
| """ | |||
| if isinstance(fobj, str): | |||
| with open(fobj, "rb") as fin: | |||
| @@ -16,7 +16,7 @@ import numpy as np | |||
| class NonExistNum: | |||
| """An object that behaves like a number but means a field does not exist; It is | |||
| always greater than any real number | |||
| always greater than any real number. | |||
| """ | |||
| def __truediv__(self, _): | |||
| @@ -69,12 +69,12 @@ class OprProfRst: | |||
| footprint = None | |||
| """A mapping from ``"memory"`` or ``"computation"`` to the actual number | |||
| of corresponding operations""" | |||
| of corresponding operations.""" | |||
| def __init__(self, entry: dict): | |||
| """Opr profiling initialization, which sets up name, type and id of opr_info. | |||
| :param entry: profiling json exec_graph items | |||
| :param entry: profiling json exec_graph items. | |||
| """ | |||
| assert isinstance(entry, dict) | |||
| self.opr_info = collections.OrderedDict() | |||
| @@ -84,7 +84,7 @@ class OprProfRst: | |||
| self.footprint = collections.defaultdict(NonExistNum) | |||
| def update_device_prof_info(self, dev_time: dict): | |||
| """Updates device profiling info | |||
| """Updates device profiling info. | |||
| :param dev_time: device time for single opr, | |||
| is an attribute of profiling result. | |||
| @@ -93,7 +93,7 @@ class OprProfRst: | |||
| self.time_dict["device"].append(copy.deepcopy(dev_time)) | |||
| def update_host_prof_info(self, host_time: dict): | |||
| """Updates host profiling info | |||
| """Updates host profiling info. | |||
| :param host_time: host time for single opr, | |||
| is an attribute of profiling result. | |||
| @@ -102,7 +102,7 @@ class OprProfRst: | |||
| self.time_dict["host"].append(copy.deepcopy(host_time)) | |||
| def update_footprint(self, footprint: dict): | |||
| """Updates opr footprint | |||
| """Updates opr footprint. | |||
| :param footprint: footprint for single opr, | |||
| is an attribute of profiling result. | |||
| @@ -128,7 +128,7 @@ class Record: | |||
| ] | |||
| def __init__(self, time: float, info: dict, footprint: dict): | |||
| """Initializes single record | |||
| """Initializes single record. | |||
| :param time: opr running time, evaluated by applying users providing | |||
| function to OprProfRst. | |||
| @@ -153,7 +153,7 @@ class Record: | |||
| self.opr_id = int(self.opr_id) | |||
| def get_column_by_name(self, name: str = None): | |||
| """extracts column value by its column name | |||
| """Extracts column value by its column name. | |||
| :param name: column name, None for time. | |||
| """ | |||
| @@ -165,7 +165,7 @@ class Record: | |||
| class ProfileAnalyzer: | |||
| def __init__(self, obj: dict, opr_filter: Callable = lambda opr, inp, out: True): | |||
| """Initializes ProfileAnalyzer | |||
| """Initializes ProfileAnalyzer. | |||
| :param obj: dict dumped from json str. | |||
| :param opr_filter: function that filter oprs. | |||
| @@ -202,11 +202,11 @@ class ProfileAnalyzer: | |||
| def _aggregate( | |||
| self, records: List[Record], aop: Union[str, Callable], atype: Optional[str] | |||
| ) -> List[Record]: | |||
| """Aggregate operation | |||
| :param records: selected records | |||
| """Aggregate operation. | |||
| :param records: selected records. | |||
| :param aop: aggregate operation, if aop is str, we would replace it | |||
| with associated numpy function wth aop name" | |||
| with associated numpy function wth aop name". | |||
| :param atype: the type aggregated by, None for aggregating all into single | |||
| record. | |||
| """ | |||
| @@ -247,10 +247,10 @@ class ProfileAnalyzer: | |||
| return rst | |||
| def _sort(self, records: List[Record], sort_by: str) -> List[Record]: | |||
| """sort operation | |||
| """Sort operation. | |||
| :param records: the records after aggregate operation. | |||
| :param sort_by: keyword for sorting the list | |||
| :param sort_by: keyword for sorting the list. | |||
| """ | |||
| if sort_by is None: | |||
| return records | |||
| @@ -271,14 +271,14 @@ class ProfileAnalyzer: | |||
| sort_by: str = None, | |||
| top_k: int = 0, | |||
| ) -> List[Record]: | |||
| """Select operation | |||
| """Select operation. | |||
| :param time_func: time_func provided by user, would apply to every | |||
| OprProfRst | |||
| OprProfRst. | |||
| :param opr_filter: filter satisfied operatiors. | |||
| :param aggregate: function that apply to list of records which are | |||
| aggregated by atype | |||
| :param aggregate_by: the type aggregated by | |||
| aggregated by atype. | |||
| :param aggregate_by: the type aggregated by. | |||
| :param sort_by: keyword for sorting all records. | |||
| :param top_k: specify the maximum number of records. | |||
| :return: the records that go through select, aggregate, sort. | |||
| @@ -304,18 +304,18 @@ class TimeFuncHelper: | |||
| @staticmethod | |||
| def _eval_time(prof_type, end_key, func, opr_prof): | |||
| """Eval time | |||
| """Eval time. | |||
| :type prof_type: str | |||
| :param prof_type: 'host' or 'device' | |||
| :param prof_type: 'host' or 'device'. | |||
| :type end_key: str | |||
| :param end_key: 'kern' or 'end' | |||
| :param end_key: 'kern' or 'end'. | |||
| :type func: function | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :type opr_prof: `class OprProfRst` | |||
| :param opr_prof: operator profiling result | |||
| :param opr_prof: operator profiling result. | |||
| :rtype: float | |||
| :return: time | |||
| :return: time. | |||
| """ | |||
| if prof_type not in opr_prof.time_dict: | |||
| @@ -327,10 +327,10 @@ class TimeFuncHelper: | |||
| def eval_time_func(prof_type: str, end_key: str, func: Callable) -> float: | |||
| """Eval oprerator profile time. | |||
| :param prof_type: 'host' or 'device' | |||
| :param end_key: 'kern' or 'end' | |||
| :param prof_type: 'host' or 'device'. | |||
| :param end_key: 'kern' or 'end'. | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :return: Eval time results | |||
| :return: eval time results. | |||
| """ | |||
| return functools.partial(TimeFuncHelper._eval_time, prof_type, end_key, func) | |||
| @@ -338,18 +338,18 @@ class TimeFuncHelper: | |||
| def _min_start( | |||
| prof_type, end_key, func, opr_prof | |||
| ): # pylint: disable=unused-argument | |||
| """Eval minimum start time | |||
| """Eval minimum start time. | |||
| :type prof_type: str | |||
| :param prof_type: 'host' or 'device' | |||
| :param prof_type: 'host' or 'device'. | |||
| :type end_key: str | |||
| :param end_key: 'kern' or 'end' | |||
| :param end_key: 'kern' or 'end'. | |||
| :type func: function | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :type opr_prof: `class OprProfRst` | |||
| :param opr_prof: operator profiling result | |||
| :param opr_prof: operator profiling result. | |||
| :rtype: float | |||
| :return: time | |||
| :return: time. | |||
| """ | |||
| if prof_type not in opr_prof.time_dict: | |||
| return None | |||
| @@ -360,12 +360,12 @@ class TimeFuncHelper: | |||
| def min_start_func( | |||
| prof_type: str, end_key: str, func: Callable | |||
| ) -> float: # pylint: disable=unused-argument | |||
| """Eval oprerator profile min start time | |||
| """Eval oprerator profile min start time. | |||
| :param prof_type: 'host' or 'device' | |||
| :param end_key: 'kern' or 'end' | |||
| :param prof_type: 'host' or 'device'. | |||
| :param end_key: 'kern' or 'end'. | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :return: Eval time results | |||
| :return: eval time results. | |||
| """ | |||
| return functools.partial(TimeFuncHelper._min_start, prof_type, end_key, func) | |||
| @@ -374,15 +374,15 @@ class TimeFuncHelper: | |||
| """Eval maximum end time | |||
| :type prof_type: str | |||
| :param prof_type: 'host' or 'device' | |||
| :param prof_type: 'host' or 'device'. | |||
| :type end_key: str | |||
| :param end_key: 'kern' or 'end' | |||
| :param end_key: 'kern' or 'end'. | |||
| :type func: function | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :type opr_prof: `class OprProfRst` | |||
| :param opr_prof: operator profiling result | |||
| :param opr_prof: operator profiling result. | |||
| :rtype: float | |||
| :return: time | |||
| :return: time. | |||
| """ | |||
| if prof_type not in opr_prof.time_dict: | |||
| return None | |||
| @@ -391,11 +391,11 @@ class TimeFuncHelper: | |||
| @staticmethod | |||
| def max_end_func(prof_type: str, end_key: str, func: Callable) -> float: | |||
| """Eval oprerator profile max end time | |||
| """Eval oprerator profile max end time. | |||
| :param prof_type: 'host' or 'device' | |||
| :param end_key: 'kern' or 'end' | |||
| :param prof_type: 'host' or 'device'. | |||
| :param end_key: 'kern' or 'end'. | |||
| :param func: apply to list of all ``thread`` of ``gpu`` time. | |||
| :return: Eval time results | |||
| :return: eval time results. | |||
| """ | |||
| return functools.partial(TimeFuncHelper._max_end, prof_type, end_key, func) | |||
| @@ -23,7 +23,7 @@ class Profiler: | |||
| Profile graph execution in imperative mode. | |||
| :type path: Optional[str] | |||
| :param path: default path for profiler to dump | |||
| :param path: default path for profiler to dump. | |||
| Examples: | |||
| @@ -7,17 +7,15 @@ class TensorSanityCheck: | |||
| Examples: | |||
| .. testcode:: | |||
| .. code-block:: python | |||
| from megengine import tensor | |||
| from megengine.utils.tensor_sanity_check import TensorSanityCheck | |||
| with TensorSanityCheck() as checker: | |||
| a = tensor([1, 2]) | |||
| b = tensor([3, 4]) | |||
| c = a + b | |||
| print(c.numpy()) | |||
| .. testoutput:: | |||
| [4 6] | |||
| """ | |||
| def __init__(self): | |||
| @@ -11,10 +11,10 @@ import functools | |||
| def get_ndtuple(value, *, n, allow_zero=True): | |||
| r"""Converts possibly 1D tuple to nd tuple | |||
| r"""Converts possibly 1D tuple to nd tuple. | |||
| :type allow_zero: bool | |||
| :param allow_zero: whether to allow zero tuple value""" | |||
| :param allow_zero: whether to allow zero tuple value.""" | |||
| if not isinstance(value, collections.abc.Iterable): | |||
| value = int(value) | |||
| value = tuple([value for i in range(n)]) | |||