You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. #include "./graph_rt.h"
  2. #include "./common.h"
  3. #include "./helper.h"
  4. #include "./ops.h"
  5. #include "megbrain/gopt/inference.h"
  6. #include "megbrain/graph/cg.h"
  7. #include "megbrain/imperative.h"
  8. #include "megbrain/imperative/opr_utility.h"
  9. #include "megbrain/imperative/profiler_plugin.h"
  10. #include "megbrain/opr/basic_arith.h"
  11. #include "megbrain/opr/io.h"
  12. #include "megbrain/opr/utility.h"
  13. #include "megbrain/plugin/profiler.h"
  14. #include "megbrain/serialization/serializer.h"
  15. namespace py = pybind11;
  16. using namespace mgb;
  17. using namespace imperative;
  18. namespace ser = mgb::serialization;
  19. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  20. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  21. using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  22. using _SerializationMetadata = mgb::serialization::Metadata;
  23. using _SerializationFormat = mgb::serialization::GraphDumpFormat;
  24. namespace {
  25. class _CompGraphProfilerImpl {
  26. std::shared_ptr<ComputingGraph> m_comp_graph;
  27. GraphProfiler m_profiler;
  28. public:
  29. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
  30. : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}
  31. std::string _get_result() {
  32. auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
  33. return json->to_string();
  34. }
  35. };
  36. struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
  37. public UserDataContainer::UserData {
  38. MGB_TYPEINFO_OBJ_DECL;
  39. };
  40. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  41. } // namespace
  42. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  43. template <typename T>
  44. auto def_rendezvous(py::object m, const char* name) {
  45. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  46. .def(py::init([]() { return Rendezvous<T>::make(); }))
  47. .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
  48. .def(
  49. "get", [](Rendezvous<T>& r) { return r.get(); },
  50. py::call_guard<py::gil_scoped_release>())
  51. .def("drop", &Rendezvous<T>::drop)
  52. .def("reset", &Rendezvous<T>::reset)
  53. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  54. r.set_exception(std::make_exception_ptr(
  55. std::runtime_error(std::move(message))));
  56. });
  57. }
  58. using TensorAttr = LogicalTensorDesc;
  59. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  60. std::vector<mgb::cg::VarNode*> _replace_vars(
  61. const std::vector<mgb::cg::VarNode*>& repl_src,
  62. const std::vector<mgb::cg::VarNode*>& repl_dst,
  63. const std::vector<mgb::cg::VarNode*>& vars) {
  64. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  65. for (size_t i = 0; i < repl_src.size(); ++i) {
  66. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  67. }
  68. SymbolVarArray symvars(vars.begin(), vars.end());
  69. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  70. std::vector<mgb::cg::VarNode*> result;
  71. for (auto symvar : sym_result) {
  72. result.push_back(symvar.node());
  73. }
  74. return result;
  75. }
  76. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  77. std::vector<mgb::cg::VarNode*> _replace_oprs(
  78. const OperatorArray& repl_src, const OperatorArray& repl_dst,
  79. const std::vector<mgb::cg::VarNode*>& vars) {
  80. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
  81. for (size_t i = 0; i < repl_src.size(); ++i) {
  82. oprmap[repl_src[i]] = repl_dst[i];
  83. }
  84. const SymbolVarArray symvars(vars.begin(), vars.end());
  85. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  86. std::vector<mgb::cg::VarNode*> result;
  87. for (auto symvar : sym_result) {
  88. result.push_back(symvar.node());
  89. }
  90. return result;
  91. }
  92. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  93. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  94. if (opr->node_prop().attribute().priority == 0) {
  95. opr->node_prop().attribute().priority = opr->id();
  96. }
  97. };
  98. mgb::cg::DepOprIter dep_iter{on_opr};
  99. for (const auto& var : dest_vars) {
  100. dep_iter.add(SymbolVar(var));
  101. }
  102. }
  103. void init_graph_rt(py::module m) {
  104. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
  105. std::make_unique<mgb::OprFootprint>()};
  106. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  107. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  108. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  109. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  110. .def_property_readonly(
  111. "owner", [](cg::VarNode* v) { return v->owner_opr(); })
  112. .def_property_readonly(
  113. "graph", [](cg::VarNode* v) { return v->owner_graph(); })
  114. .def_property(
  115. "name", py::overload_cast<>(&VarNode::name, py::const_),
  116. py::overload_cast<std::string>(&VarNode::name))
  117. .def_property_readonly("dtype", [](cg::VarNode* v) { return v->dtype(); })
  118. .def_property_readonly(
  119. "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
  120. .def_property_readonly(
  121. "shape",
  122. [](cg::VarNode* v) -> const TensorShape* {
  123. auto&& mgr = v->owner_graph()->static_infer_manager();
  124. return mgr.infer_shape_fallible(v);
  125. })
  126. .def_property_readonly(
  127. "value",
  128. [](cg::VarNode* v) -> py::object {
  129. auto&& mgr = v->owner_graph()->static_infer_manager();
  130. auto&& type = mgr.get_infer_type(v);
  131. using InferType = cg::static_infer::InferType;
  132. if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
  133. return py::none();
  134. }
  135. auto* val = mgr.infer_value_fallible(v);
  136. if (!val) {
  137. return py::none();
  138. }
  139. return py::cast(*val).attr("numpy")();
  140. })
  141. .def_property_readonly("id", [](cg::VarNode* v) { return (v->id()); })
  142. .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });
  143. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
  144. m, "OperatorNode")
  145. .def_property_readonly(
  146. "graph",
  147. [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
  148. .def_property(
  149. "name",
  150. py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  151. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  152. .def_property_readonly(
  153. "inputs",
  154. [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
  155. .def_property_readonly(
  156. "outputs",
  157. [](cg::OperatorNodeBase* opr) {
  158. return to_tuple(opr->usable_output());
  159. })
  160. .def_property_readonly(
  161. "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
  162. .def_property_readonly(
  163. "params",
  164. [](cg::OperatorNodeBase* opr) {
  165. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
  166. .param->to_string();
  167. })
  168. .def_property_readonly(
  169. "type",
  170. [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
  171. .def("__repr__",
  172. [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
  173. .def_property(
  174. "priority",
  175. [](cg::OperatorNodeBase* opr) {
  176. return opr->node_prop().attribute().priority;
  177. },
  178. [](cg::OperatorNodeBase* opr, int priority) {
  179. opr->node_prop().attribute().priority = priority;
  180. });
  181. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  182. .def("execute", &cg::AsyncExecutable::execute,
  183. py::call_guard<py::gil_scoped_release>())
  184. .def("wait", &cg::AsyncExecutable::wait,
  185. py::call_guard<py::gil_scoped_release>())
  186. .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
  187. py::call_guard<py::gil_scoped_release>())
  188. .def("_to_json",
  189. [](cg::AsyncExecutable* exec) {
  190. py::call_guard<py::gil_scoped_release>();
  191. // dump currently compiled computing graph for debugging
  192. return exec->to_json()->to_string();
  193. })
  194. // only used for exception handle
  195. .def_property_readonly(
  196. "_all_rendezvous",
  197. [](cg::AsyncExecutable* exec) {
  198. auto ud =
  199. exec->owner_graph()
  200. ->options()
  201. .user_data.get_user_data<WeakRendezvousArray>();
  202. std::vector<std::shared_ptr<RendezvousBase>> ret;
  203. if (ud.second) {
  204. for (auto&& r : *ud.first[0]) {
  205. if (auto p = r.lock()) {
  206. ret.emplace_back(std::move(p));
  207. }
  208. }
  209. }
  210. return ret;
  211. })
  212. .def("get_static_memory_alloc_info",
  213. &cg::AsyncExecutable::get_static_memory_alloc_info,
  214. py::call_guard<py::gil_scoped_release>());
  215. auto PyComputingGraph =
  216. py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
  217. m, "ComputingGraph")
  218. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  219. .def("compile",
  220. [](cg::ComputingGraph& graph,
  221. const std::vector<cg::VarNode*>& dest_vars) {
  222. mgb_assert(!dest_vars.empty());
  223. cg::ComputingGraph::OutputSpec spec;
  224. for (auto v : dest_vars) {
  225. spec.emplace_back(v, nullptr);
  226. }
  227. return graph.compile(spec);
  228. })
  229. .def_property_readonly(
  230. "options",
  231. py::overload_cast<>(&cg::ComputingGraph::options));
  232. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
  233. m, "GraphProfiler")
  234. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  235. return std::make_shared<_CompGraphProfilerImpl>(graph);
  236. }))
  237. .def("get", [](_CompGraphProfilerImpl& profiler) {
  238. return profiler._get_result();
  239. });
  240. using interpreter::intl::ProfilerPlugin;
  241. py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
  242. .def(py::init<cg::ComputingGraph*>());
  243. auto GraphOptimizeOptions =
  244. py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  245. .def(py::init())
  246. .def("serialize", &_OptimizeForInferenceOptions::serialize)
  247. .def_static(
  248. "deserialize", &_OptimizeForInferenceOptions::deserialize)
  249. .def_readwrite(
  250. "f16_io_f32_comp",
  251. &_OptimizeForInferenceOptions::f16_io_f32_comp)
  252. .def_readwrite(
  253. "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  254. .def_readwrite(
  255. "fuse_conv_bias_nonlinearity",
  256. &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  257. .def_readwrite(
  258. "fuse_conv_bias_with_z",
  259. &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  260. .def_readwrite(
  261. "fuse_preprocess",
  262. &_OptimizeForInferenceOptions::fuse_preprocess)
  263. .def_readwrite(
  264. "layout_transform",
  265. &_OptimizeForInferenceOptions::layout_transform);
  266. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  267. .value("DEFAULT", _LayoutTransform::DEFAULT)
  268. .value("NCHW4", _LayoutTransform::NCHW4)
  269. .value("NHWCD4", _LayoutTransform::NHWCD4)
  270. .value("NCHW88", _LayoutTransform::NCHW88)
  271. .value("NCHW44", _LayoutTransform::NCHW44)
  272. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  273. .value("NCHW32", _LayoutTransform::NCHW32)
  274. .value("CHWN4", _LayoutTransform::CHWN4)
  275. .value("NCHW64", _LayoutTransform::NCHW64)
  276. .export_values();
  277. py::enum_<_SerializationFormat>(m, "SerializationFormat")
  278. .value("FBS", _SerializationFormat::FLATBUFFERS)
  279. .export_values();
  280. m.def("optimize_for_inference",
  281. [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  282. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  283. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  284. VarNodeArray vars;
  285. for (auto& si : res_symvars)
  286. vars.push_back(si.node());
  287. return vars;
  288. });
  289. m.def("modify_opr_algo_strategy_inplace",
  290. [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
  291. mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
  292. });
  293. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  294. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  295. auto on_opr = [&](cg::OperatorNodeBase* opr) {
  296. if (ser::GraphDumper::should_remove_in_dump(opr))
  297. return;
  298. opr_types.insert(opr->dyn_typeinfo()->name);
  299. for (auto i : opr->output())
  300. dtype_names.insert(i->dtype().name());
  301. if (opr->same_type<opr::Elemwise>()) {
  302. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  303. elemwise_modes.insert(
  304. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  305. }
  306. };
  307. cg::DepOprIter opr_iter{on_opr};
  308. for (auto i : dest_vars)
  309. opr_iter.add(i->owner_opr());
  310. auto to_json = [](const std::unordered_set<const char*>& v) {
  311. std::vector<std::string> vs(v.begin(), v.end());
  312. std::sort(vs.begin(), vs.end());
  313. auto ret = json::Array::make();
  314. for (auto&& i : vs)
  315. ret->add(json::String::make(i));
  316. return ret;
  317. };
  318. return json::Object::make({
  319. {"opr_types", to_json(opr_types)},
  320. {"dtypes", to_json(dtype_names)},
  321. {"elemwise_modes", to_json(elemwise_modes)},
  322. })
  323. ->to_string();
  324. });
  325. py::class_<_SerializationMetadata>(m, "SerializationMetadata")
  326. .def(py::init())
  327. .def_property(
  328. "user_info",
  329. [](const _SerializationMetadata& meta) {
  330. return py::bytes(meta.get_user_info());
  331. },
  332. &_SerializationMetadata::set_user_info)
  333. .def_readonly(
  334. "optimized_for_inference",
  335. &_SerializationMetadata::optimized_for_inference)
  336. .def_property(
  337. "optimize_options", &_SerializationMetadata::get_optimize_options,
  338. &_SerializationMetadata::set_optimize_options)
  339. .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
  340. .def_readwrite("is_valid", &_SerializationMetadata::is_valid);
  341. m.def("dump_graph",
  342. [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
  343. bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
  344. std::optional<_SerializationMetadata> metadata,
  345. std::optional<_SerializationFormat> dump_format, py::list& stat,
  346. py::list& inputs, py::list& outputs, py::list& params) {
  347. std::vector<uint8_t> buf;
  348. ser::GraphDumpFormat format;
  349. if (dump_format.has_value()) {
  350. format = dump_format.value();
  351. } else {
  352. format = {};
  353. }
  354. auto dumper = ser::GraphDumper::make(
  355. ser::OutputFile::make_vector_proxy(&buf), format);
  356. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  357. ser::GraphDumper::DumpConfig config{
  358. keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};
  359. ser::GraphDumper::DumpResult rst;
  360. if (metadata)
  361. rst = dumper->dump(symvars, config, *metadata);
  362. else
  363. rst = dumper->dump(symvars, config);
  364. for (auto i : rst.inputs) {
  365. inputs.append(py::cast(i));
  366. }
  367. for (auto i : rst.outputs) {
  368. outputs.append(py::cast(i));
  369. }
  370. for (auto i : rst.params) {
  371. params.append(py::cast(i));
  372. }
  373. auto rst_stat = std::vector{
  374. rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  375. static_cast<size_t>(rst.content_hash)};
  376. for (auto i : rst_stat) {
  377. stat.append(py::cast(i));
  378. }
  379. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  380. });
  381. m.def("load_graph",
  382. [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
  383. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  384. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  385. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  386. ser::GraphLoader::LoadConfig config;
  387. auto rst = loader->load(config);
  388. for (auto i : rst.output_var_map) {
  389. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  390. }
  391. for (auto i : rst.output_var_list) {
  392. output_var_list.append(i.node());
  393. }
  394. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  395. for (const auto& pair : rst.tensor_map) {
  396. tensor2name[pair.second.get()] = &pair.first;
  397. }
  398. auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
  399. if (!opr->same_type<opr::Host2DeviceCopy>())
  400. return;
  401. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  402. auto it = tensor2name.find(h2d.host_data().get());
  403. mgb_throw_if(
  404. it == tensor2name.end(), GraphError,
  405. "unbound Host2DeviceCopy in loaded graph");
  406. h2d.output(0)->name(*it->second);
  407. };
  408. cg::DepOprIter iter{cb};
  409. for (const auto& var : rst.output_var_list) {
  410. iter.add(var);
  411. }
  412. auto ret = py::tuple(2);
  413. ret[0] = py::cast(rst.graph);
  414. ret[1] = py::cast(rst.metadata);
  415. return ret;
  416. });
  417. #define CURRENT_CLASS cg::ComputingGraph::Options
  418. // clang-format off
  419. auto PyComputingGraphOptions =
  420. py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  421. // DEF_READWRITE(opr_attribute)
  422. DEF_READWRITE(seq_opt)
  423. DEF_READWRITE(graph_opt)
  424. DEF_READWRITE(graph_opt_level)
  425. DEF_READWRITE(log_level)
  426. DEF_READWRITE(async_exec_level)
  427. DEF_READWRITE(force_dynamic_alloc)
  428. DEF_READWRITE(var_sanity_check_first_run)
  429. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  430. DEF_READWRITE(fake_next_exec)
  431. DEF_READWRITE(enable_sublinear_memory_opt)
  432. DEF_READWRITE(enable_dtr_memory_opt)
  433. DEF_READWRITE(no_profiling_on_shape_change)
  434. DEF_READWRITE(enable_var_mem_defragment)
  435. DEF_READWRITE(enable_grad_var_static_reshape)
  436. DEF_READWRITE(enable_memory_swap)
  437. DEF_READWRITE(comp_node_seq_record_level)
  438. DEF_READWRITE(no_force_inplace)
  439. DEF_READWRITE(sublinear_mem_config)
  440. DEF_READWRITE(dtr_config)
  441. // DEF_READWRITE(eager_evaluation)
  442. // DEF_READWRITE(imperative_proxy_graph)
  443. // DEF_READWRITE(extra_vardeps)
  444. // DEF_READWRITE(user_data)
  445. ;
  446. // clang-format on
  447. #undef CURRENT_CLASS
  448. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  449. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  450. DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
  451. DEF_READWRITE(enable_seq_comp_node_opt);
  452. #undef CURRENT_CLASS
  453. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  454. auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
  455. PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
  456. DEF_READWRITE(jit_config)
  457. DEF_READWRITE(tensorrt);
  458. #undef CURRENT_CLASS
  459. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
  460. py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
  461. PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
  462. DEF_READWRITE(fuse_reduce);
  463. #undef CURRENT_CLASS
  464. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  465. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
  466. PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
  467. DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
  468. DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
  469. #undef CURRENT_CLASS
  470. #define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig
  471. py::class_<cg::ComputingGraph::Options::DTRConfig>(
  472. PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
  473. DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
  474. DEF_READWRITE(recomp_time_factor);
  475. #undef CURRENT_CLASS
  476. auto common = rel_import("common", m, 1);
  477. common.def(
  478. "invoke_op",
  479. [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
  480. cg::ComputingGraph* graph) {
  481. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  482. return to_tuple(OpDef::apply_on_var_node(def, vinputs));
  483. },
  484. py::arg(), py::arg(), py::arg("graph") = py::none());
  485. auto input_callback = [](auto callback, const CompNode& comp_node,
  486. const DType& dtype, const TensorShape& shape,
  487. const std::vector<cg::VarNode*>& inputs,
  488. cg::ComputingGraph* graph, bool use_static_shape) {
  489. if (!graph) {
  490. graph = inputs[0]->owner_graph();
  491. }
  492. SymbolVarArray sinputs;
  493. for (auto i : inputs) {
  494. sinputs.emplace_back(i);
  495. }
  496. static_assert(!std::is_reference<decltype(callback)>::value);
  497. auto soutputs = opr::InputCallback::make(
  498. *graph, std::move(callback), comp_node, dtype, shape, sinputs,
  499. use_static_shape);
  500. std::vector<VarNode*> outputs;
  501. outputs.reserve(soutputs.size());
  502. for (auto i : soutputs) {
  503. outputs.push_back(i.node());
  504. }
  505. return outputs;
  506. };
  507. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  508. return opr::SharedDeviceTensor::make(
  509. *graph, std::make_shared<DeviceTensorND>(data))
  510. .node();
  511. });
  512. m.def(
  513. "make_const",
  514. [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
  515. std::optional<std::string> name) {
  516. if (!cn.valid()) {
  517. cn = CompNode::load(get_default_device());
  518. }
  519. OperatorNodeConfig config(cn);
  520. if (name) {
  521. config.name(*name);
  522. }
  523. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  524. return opr::ImmutableTensor::make(*graph, hv, config).node();
  525. },
  526. py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());
  527. m.def(
  528. "make_h2d",
  529. [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
  530. std::optional<std::string> name) {
  531. if (!cn.valid()) {
  532. throw py::type_error("device must be valid");
  533. }
  534. if (!dtype.valid()) {
  535. throw py::type_error("dtype must be valid");
  536. }
  537. OperatorNodeConfig config;
  538. if (name) {
  539. config.name(*name);
  540. }
  541. return opr::Host2DeviceCopy::make(
  542. graph, std::make_shared<HostTensorND>(cn, shape, dtype),
  543. config)
  544. .node();
  545. },
  546. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  547. py::arg() = py::none());
  548. m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
  549. m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
  550. m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());
  551. m.def(
  552. "input_callback",
  553. [input_callback](
  554. std::function<DeviceTensorND(void)> callback,
  555. const CompNode& comp_node, const DType& dtype,
  556. const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
  557. cg::ComputingGraph* graph, bool use_static_shape) {
  558. return input_callback(
  559. [f = std::move(callback)]() {
  560. py::gil_scoped_acquire _;
  561. return f();
  562. },
  563. comp_node, dtype, shape, inputs, graph, use_static_shape);
  564. },
  565. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  566. py::arg() = py::tuple(), py::arg("graph") = py::none(),
  567. py::arg("use_static_shape") = false);
  568. m.def(
  569. "input_callback",
  570. [input_callback](
  571. std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  572. const CompNode& comp_node, const DType& dtype,
  573. const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
  574. cg::ComputingGraph* graph, bool use_static_shape) {
  575. auto f = [p]() -> DeviceTensorND { return p->get(); };
  576. return input_callback(
  577. std::move(f), comp_node, dtype, shape, inputs, graph,
  578. use_static_shape);
  579. },
  580. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  581. py::arg() = py::tuple(), py::arg("graph") = py::none(),
  582. py::arg("use_static_shape") = false);
  583. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  584. std::shared_ptr<RendezvousBase> r = {},
  585. bool borrow = false, bool prefer_host_value = false) {
  586. if (r) {
  587. mgb_assert(inputs.size());
  588. auto cg = inputs[0]->owner_graph();
  589. cg->options()
  590. .user_data.get_user_data_or_create<WeakRendezvousArray>()
  591. ->emplace_back(r);
  592. }
  593. SymbolVarArray sinputs;
  594. for (auto i : inputs) {
  595. sinputs.emplace_back(i);
  596. }
  597. static_assert(!std::is_reference<decltype(callback)>::value);
  598. opr::OutputCallback::Param param{
  599. std::move(callback), borrow, prefer_host_value};
  600. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  601. return output.node();
  602. };
  603. m.def("output_callback", [output_callback](
  604. std::function<void(DeviceTensorND)> callback,
  605. std::vector<cg::VarNode*> inputs) {
  606. auto f = [f = std::move(callback)](DeviceTensorND dv) {
  607. auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
  608. py_task_q.add_task(std::move(task));
  609. };
  610. return output_callback(std::move(f), std::move(inputs));
  611. });
  612. m.def("output_callback", [output_callback](
  613. std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  614. std::vector<cg::VarNode*> inputs) {
  615. auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
  616. return output_callback(std::move(f), std::move(inputs), p);
  617. });
  618. m.def("value_output_callback",
  619. [output_callback](
  620. std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
  621. std::vector<cg::VarNode*> inputs) {
  622. auto f = [p](DeviceTensorND dv) {
  623. HostNDWithEvent hv_with_event;
  624. hv_with_event.first.copy_from(dv);
  625. hv_with_event.second = dv.comp_node().create_event();
  626. hv_with_event.second->record();
  627. p->set(std::move(hv_with_event));
  628. };
  629. return output_callback(std::move(f), std::move(inputs), p, true, true);
  630. });
  631. m.def("attr_output_callback", [output_callback](
  632. std::shared_ptr<Rendezvous<TensorAttr>> p,
  633. std::vector<cg::VarNode*> inputs) {
  634. auto f = [p](DeviceTensorND dv) {
  635. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  636. };
  637. return output_callback(std::move(f), std::move(inputs), p, true);
  638. });
  639. m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
  640. auto&& graph = inputs[0]->owner_graph();
  641. VarNodeArray inps(inputs.begin(), inputs.end());
  642. cg::OperatorNodeConfig config;
  643. if (device.length() > 0) {
  644. config.comp_node(CompNode::load(device));
  645. }
  646. cg::OperatorNodeBase* opr =
  647. graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
  648. return opr;
  649. });
  650. }