You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_rt.cpp 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. #include "./graph_rt.h"
  2. #include "./common.h"
  3. #include "./helper.h"
  4. #include "./ops.h"
  5. #include "megbrain/gopt/inference.h"
  6. #include "megbrain/graph/cg.h"
  7. #include "megbrain/imperative.h"
  8. #include "megbrain/imperative/opr_utility.h"
  9. #include "megbrain/imperative/profiler_plugin.h"
  10. #include "megbrain/opr/basic_arith.h"
  11. #include "megbrain/opr/io.h"
  12. #include "megbrain/opr/utility.h"
  13. #include "megbrain/plugin/profiler.h"
  14. #include "megbrain/serialization/serializer.h"
  15. namespace py = pybind11;
  16. using namespace mgb;
  17. using namespace imperative;
  18. namespace ser = mgb::serialization;
  19. using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
  20. using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
  21. using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  22. using _SerializationMetadata = mgb::serialization::Metadata;
  23. using _SerializationFormat = mgb::serialization::GraphDumpFormat;
  24. namespace {
  25. class _CompGraphProfilerImpl {
  26. std::shared_ptr<ComputingGraph> m_comp_graph;
  27. GraphProfiler m_profiler;
  28. public:
  29. _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
  30. : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}
  31. std::string _get_result() {
  32. auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
  33. return json->to_string();
  34. }
  35. };
  36. struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
  37. public UserDataContainer::UserData {
  38. MGB_TYPEINFO_OBJ_DECL;
  39. };
  40. MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
  41. } // namespace
  42. #define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)
  43. template <typename T>
  44. auto def_rendezvous(py::object m, const char* name) {
  45. return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
  46. .def(py::init([]() { return Rendezvous<T>::make(); }))
  47. .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
  48. .def(
  49. "get", [](Rendezvous<T>& r) { return r.get(); },
  50. py::call_guard<py::gil_scoped_release>())
  51. .def("drop", &Rendezvous<T>::drop)
  52. .def("reset", &Rendezvous<T>::reset)
  53. .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
  54. r.set_exception(std::make_exception_ptr(
  55. std::runtime_error(std::move(message))));
  56. });
  57. }
  58. using TensorAttr = LogicalTensorDesc;
  59. using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
  60. std::vector<mgb::cg::VarNode*> _replace_vars(
  61. const std::vector<mgb::cg::VarNode*>& repl_src,
  62. const std::vector<mgb::cg::VarNode*>& repl_dst,
  63. const std::vector<mgb::cg::VarNode*>& vars) {
  64. mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
  65. for (size_t i = 0; i < repl_src.size(); ++i) {
  66. varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
  67. }
  68. SymbolVarArray symvars(vars.begin(), vars.end());
  69. auto sym_result = mgb::cg::replace_vars(symvars, varmap);
  70. std::vector<mgb::cg::VarNode*> result;
  71. for (auto symvar : sym_result) {
  72. result.push_back(symvar.node());
  73. }
  74. return result;
  75. }
  76. typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
  77. std::vector<mgb::cg::VarNode*> _replace_oprs(
  78. const OperatorArray& repl_src, const OperatorArray& repl_dst,
  79. const std::vector<mgb::cg::VarNode*>& vars) {
  80. mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
  81. for (size_t i = 0; i < repl_src.size(); ++i) {
  82. oprmap[repl_src[i]] = repl_dst[i];
  83. }
  84. const SymbolVarArray symvars(vars.begin(), vars.end());
  85. auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
  86. std::vector<mgb::cg::VarNode*> result;
  87. for (auto symvar : sym_result) {
  88. result.push_back(symvar.node());
  89. }
  90. return result;
  91. }
  92. void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
  93. auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
  94. if (opr->node_prop().attribute().priority == 0) {
  95. opr->node_prop().attribute().priority = opr->id();
  96. }
  97. };
  98. mgb::cg::DepOprIter dep_iter{on_opr};
  99. for (const auto& var : dest_vars) {
  100. dep_iter.add(SymbolVar(var));
  101. }
  102. }
  103. py::object Py_Varnode = py::none();
  104. void init_graph_rt(py::module m) {
  105. static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
  106. std::make_unique<mgb::OprFootprint>()};
  107. def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");
  108. def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");
  109. def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");
  110. Py_Varnode =
  111. py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
  112. .def_property_readonly(
  113. "owner", [](cg::VarNode* v) { return v->owner_opr(); })
  114. .def_property_readonly(
  115. "graph", [](cg::VarNode* v) { return v->owner_graph(); })
  116. .def_property(
  117. "name", py::overload_cast<>(&VarNode::name, py::const_),
  118. py::overload_cast<std::string>(&VarNode::name))
  119. .def_property_readonly(
  120. "dtype", [](cg::VarNode* v) { return v->dtype(); })
  121. .def_property_readonly(
  122. "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
  123. .def_property_readonly(
  124. "shape",
  125. [](cg::VarNode* v) -> const TensorShape* {
  126. auto&& mgr = v->owner_graph()->static_infer_manager();
  127. return mgr.infer_shape_fallible(v);
  128. })
  129. .def_property_readonly(
  130. "value",
  131. [](cg::VarNode* v) -> py::object {
  132. auto&& mgr = v->owner_graph()->static_infer_manager();
  133. auto&& type = mgr.get_infer_type(v);
  134. using InferType = cg::static_infer::InferType;
  135. if (!(type.value &
  136. (InferType::CONST | InferType::RT_STATIC))) {
  137. return py::none();
  138. }
  139. auto* val = mgr.infer_value_fallible(v);
  140. if (!val) {
  141. return py::none();
  142. }
  143. return py::cast(*val).attr("numpy")();
  144. })
  145. .def_property_readonly(
  146. "id", [](cg::VarNode* v) { return (v->id()); })
  147. .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });
  148. py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
  149. m, "OperatorNode")
  150. .def_property_readonly(
  151. "graph",
  152. [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
  153. .def_property(
  154. "name",
  155. py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
  156. py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
  157. .def_property_readonly(
  158. "inputs",
  159. [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
  160. .def_property_readonly(
  161. "outputs",
  162. [](cg::OperatorNodeBase* opr) {
  163. return to_tuple(opr->usable_output());
  164. })
  165. .def_property_readonly(
  166. "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
  167. .def_property_readonly(
  168. "params",
  169. [](cg::OperatorNodeBase* opr) {
  170. return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
  171. .param->to_string();
  172. })
  173. .def_property_readonly(
  174. "type",
  175. [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
  176. .def("__repr__",
  177. [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
  178. .def_property(
  179. "priority",
  180. [](cg::OperatorNodeBase* opr) {
  181. return opr->node_prop().attribute().priority;
  182. },
  183. [](cg::OperatorNodeBase* opr, int priority) {
  184. opr->node_prop().attribute().priority = priority;
  185. });
  186. py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
  187. .def("execute", &cg::AsyncExecutable::execute,
  188. py::call_guard<py::gil_scoped_release>())
  189. .def("wait", &cg::AsyncExecutable::wait,
  190. py::call_guard<py::gil_scoped_release>())
  191. .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
  192. py::call_guard<py::gil_scoped_release>())
  193. .def("_to_json",
  194. [](cg::AsyncExecutable* exec) {
  195. py::call_guard<py::gil_scoped_release>();
  196. // dump currently compiled computing graph for debugging
  197. return exec->to_json()->to_string();
  198. })
  199. // only used for exception handle
  200. .def_property_readonly(
  201. "_all_rendezvous",
  202. [](cg::AsyncExecutable* exec) {
  203. auto ud =
  204. exec->owner_graph()
  205. ->options()
  206. .user_data.get_user_data<WeakRendezvousArray>();
  207. std::vector<std::shared_ptr<RendezvousBase>> ret;
  208. if (ud.second) {
  209. for (auto&& r : *ud.first[0]) {
  210. if (auto p = r.lock()) {
  211. ret.emplace_back(std::move(p));
  212. }
  213. }
  214. }
  215. return ret;
  216. })
  217. .def("get_static_memory_alloc_info",
  218. &cg::AsyncExecutable::get_static_memory_alloc_info,
  219. py::call_guard<py::gil_scoped_release>());
  220. auto PyComputingGraph =
  221. py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
  222. m, "ComputingGraph")
  223. .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
  224. .def("compile",
  225. [](cg::ComputingGraph& graph,
  226. const std::vector<cg::VarNode*>& dest_vars) {
  227. mgb_assert(!dest_vars.empty());
  228. cg::ComputingGraph::OutputSpec spec;
  229. for (auto v : dest_vars) {
  230. spec.emplace_back(v, nullptr);
  231. }
  232. return graph.compile(spec);
  233. })
  234. .def("enable_weight_preprocess",
  235. [](cg::ComputingGraph& graph) {
  236. graph.options().graph_opt.enable_weight_preprocess();
  237. })
  238. .def_property_readonly(
  239. "options",
  240. py::overload_cast<>(&cg::ComputingGraph::options));
  241. py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
  242. m, "GraphProfiler")
  243. .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
  244. return std::make_shared<_CompGraphProfilerImpl>(graph);
  245. }))
  246. .def("get", [](_CompGraphProfilerImpl& profiler) {
  247. return profiler._get_result();
  248. });
  249. using interpreter::intl::ProfilerPlugin;
  250. py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
  251. .def(py::init<cg::ComputingGraph*>());
  252. auto GraphOptimizeOptions =
  253. py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
  254. .def(py::init())
  255. .def("serialize", &_OptimizeForInferenceOptions::serialize)
  256. .def_static(
  257. "deserialize", &_OptimizeForInferenceOptions::deserialize)
  258. .def_readwrite(
  259. "f16_io_f32_comp",
  260. &_OptimizeForInferenceOptions::f16_io_f32_comp)
  261. .def_readwrite(
  262. "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
  263. .def_readwrite(
  264. "fuse_conv_bias_nonlinearity",
  265. &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
  266. .def_readwrite(
  267. "fuse_conv_bias_with_z",
  268. &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
  269. .def_readwrite(
  270. "fuse_preprocess",
  271. &_OptimizeForInferenceOptions::fuse_preprocess)
  272. .def_readwrite(
  273. "layout_transform",
  274. &_OptimizeForInferenceOptions::layout_transform)
  275. .def_readwrite(
  276. "fuse_grain", &_OptimizeForInferenceOptions::fuse_grain);
  277. py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
  278. .value("DEFAULT", _LayoutTransform::DEFAULT)
  279. .value("NCHW4", _LayoutTransform::NCHW4)
  280. .value("NHWCD4", _LayoutTransform::NHWCD4)
  281. .value("NCHW88", _LayoutTransform::NCHW88)
  282. .value("NCHW44", _LayoutTransform::NCHW44)
  283. .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
  284. .value("NCHW32", _LayoutTransform::NCHW32)
  285. .value("CHWN4", _LayoutTransform::CHWN4)
  286. .value("NCHW64", _LayoutTransform::NCHW64)
  287. .export_values();
  288. py::enum_<_SerializationFormat>(m, "SerializationFormat")
  289. .value("FBS", _SerializationFormat::FLATBUFFERS)
  290. .value("FBS_V2", _SerializationFormat::FLATBUFFERS_V2)
  291. .export_values();
  292. m.def("optimize_for_inference",
  293. [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
  294. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  295. auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
  296. VarNodeArray vars;
  297. for (auto& si : res_symvars)
  298. vars.push_back(si.node());
  299. return vars;
  300. });
  301. m.def("modify_opr_algo_strategy_inplace",
  302. [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
  303. mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
  304. });
  305. m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
  306. std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
  307. auto on_opr = [&](cg::OperatorNodeBase* opr) {
  308. if (ser::GraphDumper::should_remove_in_dump(opr))
  309. return;
  310. opr_types.insert(opr->dyn_typeinfo()->name);
  311. for (auto i : opr->output())
  312. dtype_names.insert(i->dtype().name());
  313. if (opr->same_type<opr::Elemwise>()) {
  314. auto mode = opr->cast_final<opr::Elemwise>().param().mode;
  315. elemwise_modes.insert(
  316. megdnn::Elemwise::ModeTrait::from_mode(mode).name);
  317. }
  318. };
  319. cg::DepOprIter opr_iter{on_opr};
  320. for (auto i : dest_vars)
  321. opr_iter.add(i->owner_opr());
  322. auto to_json = [](const std::unordered_set<const char*>& v) {
  323. std::vector<std::string> vs(v.begin(), v.end());
  324. std::sort(vs.begin(), vs.end());
  325. auto ret = json::Array::make();
  326. for (auto&& i : vs)
  327. ret->add(json::String::make(i));
  328. return ret;
  329. };
  330. return json::Object::make({
  331. {"opr_types", to_json(opr_types)},
  332. {"dtypes", to_json(dtype_names)},
  333. {"elemwise_modes", to_json(elemwise_modes)},
  334. })
  335. ->to_string();
  336. });
  337. py::class_<_SerializationMetadata>(m, "SerializationMetadata")
  338. .def(py::init())
  339. .def_property(
  340. "user_info",
  341. [](const _SerializationMetadata& meta) {
  342. return py::bytes(meta.get_user_info());
  343. },
  344. &_SerializationMetadata::set_user_info)
  345. .def_readonly(
  346. "optimized_for_inference",
  347. &_SerializationMetadata::optimized_for_inference)
  348. .def_property(
  349. "optimize_options", &_SerializationMetadata::get_optimize_options,
  350. &_SerializationMetadata::set_optimize_options)
  351. .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
  352. .def_readwrite("is_valid", &_SerializationMetadata::is_valid);
  353. m.def("dump_graph",
  354. [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
  355. bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
  356. bool no_change_graph, std::optional<_SerializationMetadata> metadata,
  357. std::optional<_SerializationFormat> dump_format,
  358. std::optional<int> model_version, py::list& stat, py::list& inputs,
  359. py::list& outputs, py::list& params) {
  360. std::vector<uint8_t> buf;
  361. ser::GraphDumpFormat format = ser::GraphDumpFormat::FLATBUFFERS_V2;
  362. int version = 2;
  363. if (dump_format.has_value()) {
  364. format = dump_format.value();
  365. }
  366. if (model_version.has_value()) {
  367. version = model_version.value();
  368. }
  369. auto dumper = ser::GraphDumper::make(
  370. ser::OutputFile::make_vector_proxy(&buf), format, version);
  371. SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
  372. ser::GraphDumper::DumpConfig config{
  373. keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};
  374. config.no_change_graph = no_change_graph;
  375. ser::GraphDumper::DumpResult rst;
  376. if (metadata)
  377. rst = dumper->dump(symvars, config, *metadata);
  378. else
  379. rst = dumper->dump(symvars, config);
  380. for (auto i : rst.inputs) {
  381. inputs.append(py::cast(i));
  382. }
  383. for (auto i : rst.outputs) {
  384. outputs.append(py::cast(i));
  385. }
  386. for (auto i : rst.params) {
  387. params.append(py::cast(i));
  388. }
  389. auto rst_stat = std::vector{
  390. rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
  391. static_cast<size_t>(rst.content_hash)};
  392. for (auto i : rst_stat) {
  393. stat.append(py::cast(i));
  394. }
  395. return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
  396. });
  397. m.def("load_graph",
  398. [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
  399. auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
  400. auto format = ser::GraphLoader::identify_graph_dump_format(*file);
  401. auto loader = ser::GraphLoader::make(std::move(file), format.val());
  402. ser::GraphLoader::LoadConfig config;
  403. auto rst = loader->load(config);
  404. for (auto i : rst.output_var_map) {
  405. output_var_map.append(py::make_tuple(i.first, i.second.node()));
  406. }
  407. for (auto i : rst.output_var_list) {
  408. output_var_list.append(i.node());
  409. }
  410. std::unordered_map<HostTensorND*, const std::string*> tensor2name;
  411. for (const auto& pair : rst.tensor_map) {
  412. tensor2name[pair.second.get()] = &pair.first;
  413. }
  414. auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
  415. if (!opr->same_type<opr::Host2DeviceCopy>())
  416. return;
  417. auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
  418. auto it = tensor2name.find(h2d.host_data().get());
  419. mgb_throw_if(
  420. it == tensor2name.end(), GraphError,
  421. "unbound Host2DeviceCopy in loaded graph");
  422. h2d.output(0)->name(*it->second);
  423. };
  424. cg::DepOprIter iter{cb};
  425. for (const auto& var : rst.output_var_list) {
  426. iter.add(var);
  427. }
  428. auto ret = py::tuple(2);
  429. ret[0] = py::cast(rst.graph);
  430. ret[1] = py::cast(rst.metadata);
  431. return ret;
  432. });
  433. #define CURRENT_CLASS cg::ComputingGraph::Options
  434. // clang-format off
  435. auto PyComputingGraphOptions =
  436. py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
  437. // DEF_READWRITE(opr_attribute)
  438. DEF_READWRITE(seq_opt)
  439. DEF_READWRITE(graph_opt)
  440. DEF_READWRITE(graph_opt_level)
  441. DEF_READWRITE(log_level)
  442. DEF_READWRITE(async_exec_level)
  443. DEF_READWRITE(force_dynamic_alloc)
  444. DEF_READWRITE(var_sanity_check_first_run)
  445. DEF_READWRITE(allocate_static_mem_after_graph_compile)
  446. DEF_READWRITE(fake_next_exec)
  447. DEF_READWRITE(enable_sublinear_memory_opt)
  448. DEF_READWRITE(enable_dtr_memory_opt)
  449. DEF_READWRITE(no_profiling_on_shape_change)
  450. DEF_READWRITE(enable_var_mem_defragment)
  451. DEF_READWRITE(enable_grad_var_static_reshape)
  452. DEF_READWRITE(enable_memory_swap)
  453. DEF_READWRITE(comp_node_seq_record_level)
  454. DEF_READWRITE(no_force_inplace)
  455. DEF_READWRITE(sublinear_mem_config)
  456. DEF_READWRITE(dtr_config)
  457. // DEF_READWRITE(eager_evaluation)
  458. // DEF_READWRITE(imperative_proxy_graph)
  459. // DEF_READWRITE(extra_vardeps)
  460. // DEF_READWRITE(user_data)
  461. ;
  462. // clang-format on
  463. #undef CURRENT_CLASS
  464. #define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt
  465. py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
  466. DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
  467. DEF_READWRITE(enable_seq_comp_node_opt);
  468. #undef CURRENT_CLASS
  469. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt
  470. auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
  471. PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
  472. DEF_READWRITE(jit_config)
  473. DEF_READWRITE(tensorrt);
  474. #undef CURRENT_CLASS
  475. #define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
  476. py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
  477. PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
  478. DEF_READWRITE(fuse_reduce);
  479. #undef CURRENT_CLASS
  480. #define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig
  481. py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
  482. PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
  483. DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
  484. DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
  485. #undef CURRENT_CLASS
  486. #define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig
  487. py::class_<cg::ComputingGraph::Options::DTRConfig>(
  488. PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
  489. DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
  490. DEF_READWRITE(recomp_time_factor);
  491. #undef CURRENT_CLASS
  492. auto common = rel_import("common", m, 1);
  493. common.def(
  494. "invoke_op",
  495. [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
  496. cg::ComputingGraph* graph) {
  497. cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
  498. return to_tuple(OpDef::apply_on_var_node(def, vinputs));
  499. },
  500. py::arg(), py::arg(), py::arg("graph") = py::none());
  501. auto input_callback = [](auto callback, const CompNode& comp_node,
  502. const DType& dtype, const TensorShape& shape,
  503. const std::vector<cg::VarNode*>& inputs,
  504. cg::ComputingGraph* graph, bool use_static_shape) {
  505. if (!graph) {
  506. graph = inputs[0]->owner_graph();
  507. }
  508. SymbolVarArray sinputs;
  509. for (auto i : inputs) {
  510. sinputs.emplace_back(i);
  511. }
  512. static_assert(!std::is_reference<decltype(callback)>::value);
  513. auto soutputs = opr::InputCallback::make(
  514. *graph, std::move(callback), comp_node, dtype, shape, sinputs,
  515. use_static_shape);
  516. std::vector<VarNode*> outputs;
  517. outputs.reserve(soutputs.size());
  518. for (auto i : soutputs) {
  519. outputs.push_back(i.node());
  520. }
  521. return outputs;
  522. };
  523. m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
  524. return opr::SharedDeviceTensor::make(
  525. *graph, std::make_shared<DeviceTensorND>(data))
  526. .node();
  527. });
  528. m.def(
  529. "make_const",
  530. [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
  531. std::optional<std::string> name) {
  532. if (!cn.valid()) {
  533. cn = CompNode::load(get_default_device());
  534. }
  535. OperatorNodeConfig config(cn);
  536. if (name) {
  537. config.name(*name);
  538. }
  539. auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
  540. return opr::ImmutableTensor::make(*graph, hv, config).node();
  541. },
  542. py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());
  543. m.def(
  544. "make_h2d",
  545. [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
  546. std::optional<std::string> name) {
  547. if (!cn.valid()) {
  548. throw py::type_error("device must be valid");
  549. }
  550. if (!dtype.valid()) {
  551. throw py::type_error("dtype must be valid");
  552. }
  553. OperatorNodeConfig config;
  554. if (name) {
  555. config.name(*name);
  556. }
  557. return opr::Host2DeviceCopy::make(
  558. graph, std::make_shared<HostTensorND>(cn, shape, dtype),
  559. config)
  560. .node();
  561. },
  562. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  563. py::arg() = py::none());
  564. m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
  565. m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
  566. m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());
  567. m.def(
  568. "input_callback",
  569. [input_callback](
  570. std::function<DeviceTensorND(void)> callback,
  571. const CompNode& comp_node, const DType& dtype,
  572. const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
  573. cg::ComputingGraph* graph, bool use_static_shape) {
  574. return input_callback(
  575. [f = std::move(callback)]() {
  576. py::gil_scoped_acquire _;
  577. return f();
  578. },
  579. comp_node, dtype, shape, inputs, graph, use_static_shape);
  580. },
  581. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  582. py::arg() = py::tuple(), py::arg("graph") = py::none(),
  583. py::arg("use_static_shape") = false);
  584. m.def(
  585. "input_callback",
  586. [input_callback](
  587. std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  588. const CompNode& comp_node, const DType& dtype,
  589. const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
  590. cg::ComputingGraph* graph, bool use_static_shape) {
  591. auto f = [p]() -> DeviceTensorND { return p->get(); };
  592. return input_callback(
  593. std::move(f), comp_node, dtype, shape, inputs, graph,
  594. use_static_shape);
  595. },
  596. py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
  597. py::arg() = py::tuple(), py::arg("graph") = py::none(),
  598. py::arg("use_static_shape") = false);
  599. auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
  600. std::shared_ptr<RendezvousBase> r = {},
  601. bool borrow = false, bool prefer_host_value = false) {
  602. if (r) {
  603. mgb_assert(inputs.size());
  604. auto cg = inputs[0]->owner_graph();
  605. cg->options()
  606. .user_data.get_user_data_or_create<WeakRendezvousArray>()
  607. ->emplace_back(r);
  608. }
  609. SymbolVarArray sinputs;
  610. for (auto i : inputs) {
  611. sinputs.emplace_back(i);
  612. }
  613. static_assert(!std::is_reference<decltype(callback)>::value);
  614. opr::OutputCallback::Param param{
  615. std::move(callback), borrow, prefer_host_value};
  616. auto output = opr::OutputCallback::make(std::move(param), sinputs);
  617. return output.node();
  618. };
  619. m.def("output_callback", [output_callback](
  620. std::function<void(DeviceTensorND)> callback,
  621. std::vector<cg::VarNode*> inputs) {
  622. auto f = [f = std::move(callback)](DeviceTensorND dv) {
  623. auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
  624. py_task_q.add_task(std::move(task));
  625. };
  626. return output_callback(std::move(f), std::move(inputs));
  627. });
  628. m.def("output_callback", [output_callback](
  629. std::shared_ptr<Rendezvous<DeviceTensorND>> p,
  630. std::vector<cg::VarNode*> inputs) {
  631. auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
  632. return output_callback(std::move(f), std::move(inputs), p);
  633. });
  634. m.def("value_output_callback",
  635. [output_callback](
  636. std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
  637. std::vector<cg::VarNode*> inputs) {
  638. auto f = [p](DeviceTensorND dv) {
  639. HostNDWithEvent hv_with_event;
  640. hv_with_event.first.copy_from(dv);
  641. hv_with_event.second = dv.comp_node().create_event();
  642. hv_with_event.second->record();
  643. p->set(std::move(hv_with_event));
  644. };
  645. return output_callback(std::move(f), std::move(inputs), p, true, true);
  646. });
  647. m.def("attr_output_callback", [output_callback](
  648. std::shared_ptr<Rendezvous<TensorAttr>> p,
  649. std::vector<cg::VarNode*> inputs) {
  650. auto f = [p](DeviceTensorND dv) {
  651. p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
  652. };
  653. return output_callback(std::move(f), std::move(inputs), p, true);
  654. });
  655. m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
  656. auto&& graph = inputs[0]->owner_graph();
  657. VarNodeArray inps(inputs.begin(), inputs.end());
  658. cg::OperatorNodeConfig config;
  659. if (device.length() > 0) {
  660. config.comp_node(CompNode::load(device));
  661. }
  662. cg::OperatorNodeBase* opr =
  663. graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
  664. return opr;
  665. });
  666. }