You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

observer.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import math
  9. from abc import abstractmethod
  10. from enum import Enum
  11. import numpy as np
  12. from .. import functional as F
  13. from .._internal.dtype import _metadata_dict, get_quantized_dtype
  14. from ..core import Buffer, Function, tensor
  15. from ..jit import sideeffect
  16. from ..module import Module
  17. from .utils import QuantMode, get_qparam_dict
  18. class Round(Function):
  19. def forward(self, x):
  20. return x.round()
  21. def backward(self, output_grads):
  22. return output_grads
  23. class Observer(Module):
  24. r"""
  25. A base class for Observer Module.
  26. :param dtype: a string indicating to collect scale and zero_point of which dtype
  27. :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``,
  28. instead of 1 greater. Usually True for weight and False for activation.
  29. """
  30. def __init__(self, dtype: str, narrow_range: bool = False):
  31. super().__init__()
  32. if dtype not in _metadata_dict.keys():
  33. raise ValueError(
  34. "unknown dtype: {}, only support {}".format(
  35. dtype, _metadata_dict.keys()
  36. )
  37. )
  38. self.dtype = dtype
  39. self.narrow_range = narrow_range
  40. self.qmin = (
  41. -_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin
  42. )
  43. self.qmax = _metadata_dict[dtype].qmax
  44. self.enabled = True
  45. def get_dtype(self):
  46. q_dict = self.get_qparams()
  47. numpy_scale = None if "scale" not in q_dict else q_dict["scale"].numpy()[0]
  48. numpy_zero_point = (
  49. None if "zero_point" not in q_dict else q_dict["zero_point"].numpy()[0]
  50. )
  51. return get_quantized_dtype(self.dtype, numpy_scale, numpy_zero_point)
  52. def enable(self):
  53. self.enabled = True
  54. def disable(self):
  55. self.enabled = False
  56. def train(self, mode: bool = True, recursive: bool = True) -> None:
  57. super().train(mode, recursive)
  58. if mode:
  59. self.enable()
  60. else:
  61. self.disable()
  62. @abstractmethod
  63. def forward(self, x):
  64. pass
  65. @abstractmethod
  66. def get_qparams(self, **kwargs):
  67. pass
  68. class MinMaxObserver(Observer):
  69. def __init__(
  70. self,
  71. mode=QuantMode.SYMMERTIC,
  72. eps=0.00001,
  73. dtype="qint8",
  74. narrow_range: bool = False,
  75. ):
  76. super().__init__(dtype, narrow_range)
  77. self.mode = mode
  78. self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32)
  79. self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32)
  80. self.scale_limit = eps
  81. def _calculate_qparams(self, inp_min_val, inp_max_val):
  82. min_val = F.minimum(0.0, inp_min_val)
  83. max_val = F.maximum(0.0, inp_max_val)
  84. q_dict = get_qparam_dict(self.mode)
  85. q_dict["min_val"] = inp_min_val
  86. q_dict["max_val"] = inp_max_val
  87. if self.mode == QuantMode.SYMMERTIC:
  88. symmetric_max_vals = F.maximum(-min_val, max_val)
  89. # use maximun to avoid scale too small at the begin
  90. q_dict["scale"] = F.maximum(
  91. symmetric_max_vals / ((self.qmax - self.qmin) / 2), self.scale_limit
  92. )
  93. # zero_point = self.zero_point
  94. else:
  95. # use maximun to avoid scale too small at the begin
  96. q_dict["scale"] = F.maximum(
  97. (max_val - min_val) / (self.qmax - self.qmin), self.scale_limit,
  98. )
  99. # caculate zero_point
  100. q_dict["zero_point"] = self.qmin - Round()((min_val / q_dict["scale"]))
  101. return q_dict
  102. def get_qparams(self):
  103. return self._calculate_qparams(self.min_val, self.max_val)
  104. def forward(self, x_orig):
  105. if self.enabled:
  106. # stop gradient
  107. x = F.zero_grad(x_orig)
  108. # find max and min
  109. F.add_update(
  110. self.min_val,
  111. F.minimum(self.min_val, x.min()),
  112. alpha=0.0,
  113. beta=1.0,
  114. bias=0.0,
  115. )
  116. F.add_update(
  117. self.max_val,
  118. F.maximum(self.max_val, x.max()),
  119. alpha=0.0,
  120. beta=1.0,
  121. bias=0.0,
  122. )
  123. return x_orig
  124. class ExponentialMovingAverageObserver(MinMaxObserver):
  125. def __init__(
  126. self,
  127. momentum=0.9,
  128. mode=QuantMode.SYMMERTIC,
  129. eps=0.00001,
  130. dtype="qint8",
  131. narrow_range: bool = False,
  132. ):
  133. super().__init__(mode, eps, dtype, narrow_range)
  134. self.momentum = Buffer(momentum)
  135. self.runtime_momentum = Buffer(0.0)
  136. def set_momentum(self, momentum):
  137. self.momentum.set_value(momentum)
  138. def forward(self, x_orig):
  139. if self.enabled:
  140. # stop gradient
  141. x = F.zero_grad(x_orig)
  142. # Exponential Moving Average
  143. tmp_min = (
  144. self.min_val * self.runtime_momentum
  145. + (1 - self.runtime_momentum) * x.min()
  146. )
  147. tmp_max = (
  148. self.max_val * self.runtime_momentum
  149. + (1 - self.runtime_momentum) * x.max()
  150. )
  151. F.add_update(self.min_val, tmp_min, alpha=0.0, beta=1.0, bias=0.0)
  152. F.add_update(self.max_val, tmp_max, alpha=0.0, beta=1.0, bias=0.0)
  153. F.add_update(
  154. self.runtime_momentum, self.momentum, alpha=0.0, beta=1.0, bias=0.0
  155. )
  156. return x_orig
  157. class HistogramObserver(MinMaxObserver):
  158. def __init__(
  159. self,
  160. bins=2048,
  161. upsample_rate=128,
  162. mode=QuantMode.SYMMERTIC,
  163. eps=0.00001,
  164. dtype="qint8",
  165. narrow_range: bool = False,
  166. ):
  167. super().__init__(mode, eps, dtype, narrow_range)
  168. self.bins = bins
  169. self.upsample_rate = upsample_rate
  170. self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1
  171. self.histogram = Buffer([-1] + [0.0] * (bins - 1))
  172. def _non_linear_param_search(self):
  173. r"""Non-linear parameter search.
  174. An approximation for L2 error minimization for selecting min/max.
  175. By selecting new min/max, we filter out outliers in input distribution.
  176. """
  177. np_min_val = self.min_val.numpy()[0]
  178. np_max_val = self.max_val.numpy()[0]
  179. np_histogram = self.histogram.numpy()
  180. assert len(np_histogram) == self.bins, "bins mistmatch"
  181. bin_width = (np_max_val - np_min_val) / self.bins
  182. def _get_norm(delta_begin, delta_end, density, norm_type):
  183. r"""
  184. Compute the norm of the values uniformaly distributed between
  185. delta_begin and delta_end.
  186. norm = density * (integral_{begin, end} x^2)
  187. = density * (end^3 - begin^3) / 3
  188. """
  189. assert norm_type == "L2", "Only L2 norms are currently supported"
  190. norm = 0.0
  191. if norm_type == "L2":
  192. norm = (
  193. delta_end * delta_end * delta_end
  194. - delta_begin * delta_begin * delta_begin
  195. ) / 3
  196. return density * norm
  197. def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
  198. r"""
  199. Compute the quantization error if we use start_bin to end_bin as the
  200. min and max to do the quantization.
  201. """
  202. norm = 0.0
  203. dst_bin_width = (
  204. bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
  205. )
  206. if dst_bin_width == 0.0:
  207. return 0.0
  208. for src_bin in range(self.bins):
  209. # distances from the beginning of first dst_bin to the beginning and
  210. # end of src_bin
  211. src_bin_begin = (src_bin - next_start_bin) * bin_width
  212. src_bin_end = src_bin_begin + bin_width
  213. # which dst_bins the beginning and end of src_bin belong to?
  214. dst_bin_of_begin = min(
  215. self.dst_nbins - 1,
  216. max(0.0, math.floor(src_bin_begin / dst_bin_width)),
  217. )
  218. dst_bin_of_end = min(
  219. self.dst_nbins - 1,
  220. max(0.0, math.floor(src_bin_end / dst_bin_width)),
  221. )
  222. dst_bin_of_begin_center = (
  223. dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
  224. )
  225. density = np_histogram[src_bin] / bin_width
  226. if dst_bin_of_begin == dst_bin_of_end:
  227. # if src_bin is entirely within 1 dst_bin
  228. delta_begin = src_bin_begin - dst_bin_of_begin_center
  229. delta_end = src_bin_end - dst_bin_of_begin_center
  230. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  231. else:
  232. delta_begin = src_bin_begin - dst_bin_of_begin_center
  233. delta_end = dst_bin_width / 2
  234. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  235. norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
  236. -dst_bin_width / 2, dst_bin_width / 2, density, norm_type
  237. )
  238. dst_bin_of_end_center = (
  239. dst_bin_of_end * dst_bin_width + dst_bin_width / 2
  240. )
  241. delta_begin = -dst_bin_width / 2
  242. delta_end = src_bin_end - dst_bin_of_end_center
  243. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  244. return norm
  245. # cumulative sum
  246. total = sum(np_histogram)
  247. cSum = np.cumsum(np_histogram, axis=0)
  248. stepsize = 1e-5 # granularity
  249. alpha = 0.0 # lower bound
  250. beta = 1.0 # upper bound
  251. start_bin = 0
  252. end_bin = self.bins - 1
  253. norm_min = float("inf")
  254. while alpha < beta:
  255. # Find the next step
  256. next_alpha = alpha + stepsize
  257. next_beta = beta - stepsize
  258. # find the left and right bins between the quantile bounds
  259. l = start_bin
  260. r = end_bin
  261. while l < end_bin and cSum[l] < next_alpha * total:
  262. l = l + 1
  263. while r > start_bin and cSum[r] > next_beta * total:
  264. r = r - 1
  265. # decide the next move
  266. next_start_bin = start_bin
  267. next_end_bin = end_bin
  268. if (l - start_bin) > (end_bin - r):
  269. # move the start bin
  270. next_start_bin = l
  271. alpha = next_alpha
  272. else:
  273. # move the end bin
  274. next_end_bin = r
  275. beta = next_beta
  276. if next_start_bin == start_bin and next_end_bin == end_bin:
  277. continue
  278. # calculate the quantization error using next_start_bin and next_end_bin
  279. norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
  280. if norm > norm_min:
  281. break
  282. norm_min = norm
  283. start_bin = next_start_bin
  284. end_bin = next_end_bin
  285. new_min = self.min_val + bin_width * start_bin
  286. new_max = self.min_val + bin_width * (end_bin + 1)
  287. return new_min, new_max
  288. def get_qparams(self):
  289. new_min, new_max = self._non_linear_param_search()
  290. return self._calculate_qparams(new_min, new_max)
  291. def _combine_histograms(
  292. self, orig_hist, new_hist, upsample_rate, downsample_rate, start_idx, Nbins
  293. ):
  294. # First up-sample the histogram with new data by a factor of L
  295. # This creates an approximate probability density thats piecwise constant
  296. upsampled_histogram = new_hist.repeat(upsample_rate)
  297. # Now insert the upsampled histogram into the output
  298. # histogram, which is initialized with zeros.
  299. # The offset at which the histogram is introduced is determined
  300. # by the start index as the output histogram can cover a wider range
  301. histogram_with_output_range = np.zeros((Nbins * downsample_rate))
  302. histogram_with_output_range[
  303. start_idx : Nbins * upsample_rate + start_idx
  304. ] = upsampled_histogram
  305. # Compute integral histogram, double precision is needed to ensure
  306. # that there are no overflows
  307. integral_histogram = np.cumsum(histogram_with_output_range, 0)[
  308. downsample_rate - 1 :: downsample_rate
  309. ]
  310. # Finally perform interpolation
  311. shifted_integral_histogram = np.zeros((Nbins))
  312. shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1]
  313. interpolated_histogram = (
  314. integral_histogram - shifted_integral_histogram
  315. ) / upsample_rate
  316. orig_hist = orig_hist + interpolated_histogram
  317. return orig_hist
  318. def _adjust_min_max(self, combined_min, combined_max, upsample_rate):
  319. # We ensure that:
  320. # (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins)
  321. # This allows us to have a common grid of resolution s, where we can align
  322. # the input histogram
  323. # start_idx maps min_val to the histogram bin index.
  324. np_min_val = self.min_val.numpy()[0]
  325. np_max_val = self.max_val.numpy()[0]
  326. hist_bin_width = (np_max_val - np_min_val) / (self.bins * upsample_rate)
  327. downsample_rate = int(
  328. np.ceil((combined_max - combined_min) / (self.bins * hist_bin_width))
  329. )
  330. e = downsample_rate * (self.bins * hist_bin_width) - (
  331. combined_max - combined_min
  332. )
  333. combined_max = combined_max + e / 2
  334. combined_min = combined_min - e / 2
  335. start_idx = int(np.round((np_min_val - combined_min) / hist_bin_width))
  336. return combined_min, combined_max, downsample_rate, start_idx
  337. @sideeffect
  338. def sideeffect_forward(self, x_orig):
  339. x = x_orig.numpy()
  340. min_val = self.min_val.numpy()[0]
  341. max_val = self.max_val.numpy()[0]
  342. histogram = self.histogram.numpy()
  343. new_min = x.min()
  344. new_max = x.max()
  345. if histogram[0] == -1:
  346. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  347. else:
  348. new_min = min(new_min, min_val)
  349. new_max = max(new_max, max_val)
  350. # combine the existing histogram and new histogram into 1 histogram
  351. # We do this by first upsampling the histogram to a dense grid
  352. # and then downsampling the histogram efficiently
  353. (new_min, new_max, downsample_rate, start_idx,) = self._adjust_min_max(
  354. new_min, new_max, self.upsample_rate
  355. )
  356. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  357. new_histogram = new_histogram.astype(np.float64)
  358. if new_min == min_val and new_max == max_val:
  359. new_histogram += histogram
  360. else:
  361. new_histogram = self._combine_histograms(
  362. new_histogram,
  363. histogram,
  364. self.upsample_rate,
  365. downsample_rate,
  366. start_idx,
  367. self.bins,
  368. )
  369. self.histogram.set_value(new_histogram)
  370. self.min_val.set_value(new_min)
  371. self.max_val.set_value(new_max)
  372. def forward(self, x_orig):
  373. self.sideeffect_forward(x_orig)
  374. return x_orig

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台