GitOrigin-RevId: 92389341be
tags/v0.6.0
| @@ -37,15 +37,14 @@ class QATModule(Module): | |||
| Set quantization related configs with ``qconfig``, including | |||
| observer and fake_quant for weight and activation. | |||
| """ | |||
| self.weight_observer = qconfig.weight_observer() | |||
| self.act_observer = qconfig.act_observer() | |||
| if qconfig.fake_quant is None: | |||
| self.weight_fake_quant = None | |||
| self.act_fake_quant = None | |||
| else: | |||
| self.weight_fake_quant = qconfig.fake_quant(self.weight_observer.dtype) | |||
| self.act_fake_quant = qconfig.fake_quant(self.act_observer.dtype) | |||
| def safe_call(func): | |||
| return func() if func is not None else None | |||
| self.weight_observer = safe_call(qconfig.weight_observer) | |||
| self.act_observer = safe_call(qconfig.act_observer) | |||
| self.weight_fake_quant = safe_call(qconfig.weight_fake_quant) | |||
| self.act_fake_quant = safe_call(qconfig.act_fake_quant) | |||
| def _apply_fakequant_with_observer( | |||
| self, target: Tensor, fake_quant: FakeQuantize, observer: Observer | |||
| @@ -19,7 +19,7 @@ from .observer import ObserverMode, Round | |||
| class _FakeQuantize(Module): | |||
| def __init__(self, dtype: str, enable: bool = True): | |||
| def __init__(self, dtype: str, narrow_range: bool = False, enable: bool = True): | |||
| super().__init__() | |||
| if not dtype in _metadata_dict.keys(): | |||
| raise ValueError( | |||
| @@ -28,7 +28,10 @@ class _FakeQuantize(Module): | |||
| ) | |||
| ) | |||
| self.dtype = dtype | |||
| self.qmin = _metadata_dict[dtype].qmin | |||
| self.narrow_range = narrow_range | |||
| self.qmin = ( | |||
| -_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin | |||
| ) | |||
| self.qmax = _metadata_dict[dtype].qmax | |||
| self.enabled = enable | |||
| @@ -90,12 +93,12 @@ class TQT_Function(Function): | |||
| class TQT(_FakeQuantize): | |||
| """ | |||
| TQT: https://arxiv.org/abs/1903.08066 Trained Quantization Thresholds | |||
| TQT: https://arxiv.org/abs/1903.08066 Trained Quantization Thresholds | |||
| for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks | |||
| """ | |||
| def __init__(self, dtype: str, enable: bool = True): | |||
| super().__init__(dtype, enable) | |||
| def __init__(self, dtype: str, narrow_range: bool = False, enable: bool = True): | |||
| super().__init__(dtype, narrow_range, enable) | |||
| self.scale = Parameter(0.0, dtype=np.float32) | |||
| def fake_quant_forward(self, inp, q_dict): | |||
| @@ -116,6 +119,11 @@ class TQT(_FakeQuantize): | |||
| class FakeQuantize(_FakeQuantize): | |||
| r""" | |||
| A module to do quant and dequant according to observer's scale and zero_point. | |||
| :param dtype: A string indicating the target quantization type of input. | |||
| :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| instead of 1 greater. Usually True for weight and False for activation. | |||
| :param enable: Whether do ``normal_forward`` or ``fake_quant_forward``. | |||
| """ | |||
| def fake_quant_forward(self, inp, q_dict): | |||
| @@ -31,9 +31,11 @@ class Observer(Module): | |||
| A base class for Observer Module. | |||
| :param dtype: a string indicating to collect scale and zero_point of which dtype | |||
| :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||
| instead of 1 greater. Usually True for weight and False for activation. | |||
| """ | |||
| def __init__(self, dtype="qint8"): | |||
| def __init__(self, dtype: str, narrow_range: bool = False): | |||
| super().__init__() | |||
| if dtype not in _metadata_dict.keys(): | |||
| raise ValueError( | |||
| @@ -42,7 +44,10 @@ class Observer(Module): | |||
| ) | |||
| ) | |||
| self.dtype = dtype | |||
| self.qmin = _metadata_dict[dtype].qmin | |||
| self.narrow_range = narrow_range | |||
| self.qmin = ( | |||
| -_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin | |||
| ) | |||
| self.qmax = _metadata_dict[dtype].qmax | |||
| self.enabled = True | |||
| @@ -96,8 +101,14 @@ def create_observer_dict(mode): | |||
| class MinMaxObserver(Observer): | |||
| def __init__(self, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8"): | |||
| super().__init__(dtype) | |||
| def __init__( | |||
| self, | |||
| mode=ObserverMode.SYMMERTIC, | |||
| eps=0.00001, | |||
| dtype="qint8", | |||
| narrow_range: bool = False, | |||
| ): | |||
| super().__init__(dtype, narrow_range) | |||
| self.mode = mode | |||
| self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32) | |||
| self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32) | |||
| @@ -153,9 +164,14 @@ class MinMaxObserver(Observer): | |||
| class ExponentialMovingAverageObserver(MinMaxObserver): | |||
| def __init__( | |||
| self, momentum=0.9, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8" | |||
| self, | |||
| momentum=0.9, | |||
| mode=ObserverMode.SYMMERTIC, | |||
| eps=0.00001, | |||
| dtype="qint8", | |||
| narrow_range: bool = False, | |||
| ): | |||
| super().__init__(mode, eps, dtype) | |||
| super().__init__(mode, eps, dtype, narrow_range) | |||
| self.momentum = Buffer(momentum) | |||
| self.runtime_momentum = Buffer(0.0) | |||
| @@ -188,11 +204,12 @@ class HistogramObserver(MinMaxObserver): | |||
| self, | |||
| bins=2048, | |||
| upsample_rate=128, | |||
| dtype="qint8", | |||
| mode=ObserverMode.SYMMERTIC, | |||
| eps=0.00001, | |||
| dtype="qint8", | |||
| narrow_range: bool = False, | |||
| ): | |||
| super().__init__(mode, eps, dtype) | |||
| super().__init__(mode, eps, dtype, narrow_range) | |||
| self.bins = bins | |||
| self.upsample_rate = upsample_rate | |||
| self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1 | |||
| @@ -5,6 +5,8 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from functools import partial | |||
| from ..module import Module | |||
| from .fake_quant import TQT, FakeQuantize | |||
| from .observer import ( | |||
| @@ -22,9 +24,9 @@ class QConfig: | |||
| :param weight_observer: interface to instantiate an :class:`~.Observer` indicating | |||
| how to collect scales and zero_point of wegiht. | |||
| :param act_observer: similar to ``weight_observer`` but toward activation. | |||
| :param fake_quant: interface to instantiate a :class:`~.FakeQuantize` indicating | |||
| how to do fake_quant calculation. can be invoked multi times to get different | |||
| instance for each target tensor, for better control on enable and disable. | |||
| :param weight_fake_quant: interface to instantiate a :class:`~.FakeQuantize` indicating | |||
| how to do fake_quant calculation. | |||
| :param act_observer: similar to ``weight_fake_quant`` but toward activation. | |||
| Examples: | |||
| @@ -32,14 +34,24 @@ class QConfig: | |||
| # Default EMA QConfig for QAT. | |||
| ema_fakequant_qconfig = QConfig( | |||
| weight_observer=MinMaxObserver, | |||
| act_observer=ExponentialMovingAverageObserver, | |||
| fake_quant=FakeQuantize, | |||
| weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||
| act_observer=partial(ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False), | |||
| weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||
| act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||
| ) | |||
| Each parameter is a ``class`` rather than an instance. And we recommand using ``functools.partial`` | |||
| to add initialization parameters of the ``class``, so that don't need to provide parameters in | |||
| :meth:`~.QATModule.set_qconfig`. | |||
| Usually we set ``narrow_range`` of weight related paramters to ``True`` and of activation related | |||
| parameters to ``False``. For the result of multiplication and addition as ``a * b + c * d``, if | |||
| four variables are all -128 of dtype ``qint8``, then the result will be ``2^15`` and cause overflow. | |||
| Weights are commonly calculated in this way, so needed to narrow the range. | |||
| """ | |||
| def __init__( | |||
| self, act_observer, weight_observer, fake_quant, | |||
| self, weight_observer, act_observer, weight_fake_quant, act_fake_quant | |||
| ): | |||
| if isinstance(act_observer, Module) or isinstance(weight_observer, Module): | |||
| raise ValueError( | |||
| @@ -47,30 +59,42 @@ class QConfig: | |||
| " class generator using `partial(Observer, ...)` instead. Use" | |||
| " partial(MyObserver, x=1) to override arguments to constructor if needed" | |||
| ) | |||
| self.act_observer = act_observer | |||
| self.weight_observer = weight_observer | |||
| self.fake_quant = fake_quant | |||
| self.act_observer = act_observer | |||
| self.weight_fake_quant = weight_fake_quant | |||
| self.act_fake_quant = act_fake_quant | |||
| tqt_quant_qconfig = QConfig( | |||
| weight_observer=ExponentialMovingAverageObserver, | |||
| act_observer=ExponentialMovingAverageObserver, | |||
| fake_quant=TQT, | |||
| weight_observer=partial( | |||
| ExponentialMovingAverageObserver, dtype="qint8", narrow_range=True | |||
| ), | |||
| act_observer=partial( | |||
| ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False | |||
| ), | |||
| weight_fake_quant=partial(TQT, dtype="qint8", narrow_range=True), | |||
| act_fake_quant=partial(TQT, dtype="qint8", narrow_range=False), | |||
| ) | |||
| # Default QAT QConfigs | |||
| min_max_fakequant_qconfig = QConfig( | |||
| weight_observer=MinMaxObserver, | |||
| act_observer=MinMaxObserver, | |||
| fake_quant=FakeQuantize, | |||
| weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||
| act_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=False), | |||
| weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||
| act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||
| ) | |||
| ema_fakequant_qconfig = QConfig( | |||
| weight_observer=MinMaxObserver, | |||
| act_observer=ExponentialMovingAverageObserver, | |||
| fake_quant=FakeQuantize, | |||
| weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||
| act_observer=partial( | |||
| ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False | |||
| ), | |||
| weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||
| act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||
| ) | |||
| calibration_qconfig = QConfig( | |||
| weight_observer=MinMaxObserver, act_observer=HistogramObserver, fake_quant=None, | |||
| weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||
| act_observer=partial(HistogramObserver, dtype="qint8", narrow_range=False), | |||
| weight_fake_quant=None, | |||
| act_fake_quant=None, | |||
| ) | |||