You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

trace.cpp 2.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. /**
  2. * \file imperative/python/src/trace.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "./trace.h"
  13. #include "./helper.h"
  14. #include "megbrain/imperative/ops/autogen.h"
  15. namespace py = pybind11;
  16. namespace mgb::imperative::python {
  17. apply_result_t apply_trace(ApplyContext& ctx) {
  18. apply_result_t outputs;
  19. if (ctx.backward) {
  20. // reach here when compiled=True
  21. // call megbrain_graph.py apply(BackwardGraph, *args)
  22. auto args = py::tuple(ctx.nargs + 1);
  23. args[0] = py::cast(ctx.op);
  24. for (size_t i = 0; i < ctx.nargs; i++) {
  25. args[i + 1] = py::cast(ctx.args[i]->m_var);
  26. }
  27. py::object ret = py::reinterpret_steal<py::object>(
  28. PyObject_Call(cpp_apply_backward_varnode, args.ptr(), nullptr));
  29. if (!ret) throw py::error_already_set();
  30. // assumption: python function always returns PyList
  31. auto tup = py::reinterpret_borrow<py::list>(ret);
  32. for (auto i = 0; i < tup.size(); i++) {
  33. auto pitem = tup[i].cast<cg::VarNode*>();
  34. outputs.emplace_back(std::make_shared<Tensor>(pitem));
  35. }
  36. return outputs;
  37. }
  38. PyObject* pyf;
  39. if (is_compiled) {
  40. // run apply in compiled mode, step 2, 3, etc
  41. pyf = cpp_apply_compiled_mode;
  42. } else {
  43. // run first step, both symbolic and non symbolic
  44. pyf = cpp_apply_with_tracing;
  45. }
  46. auto args = py::tuple(ctx.nargs + 1);
  47. args[0] = py::cast(ctx.op);
  48. for (size_t i = 0; i < ctx.nargs; i++) {
  49. args[i + 1] = TensorWrapper::make(ctx.args[i]->shared_from_this());
  50. }
  51. auto pyout = PyObject_Call(pyf, args.ptr(), nullptr);
  52. if (!pyout) throw py::error_already_set();
  53. auto ret = py::reinterpret_steal<py::object>(pyout);
  54. // assumption: python function always returns PyList
  55. auto tup = py::reinterpret_borrow<py::list>(ret);
  56. for (auto i = 0; i < tup.size(); i++) {
  57. auto tw = TensorWrapper::try_cast(tup[i].ptr());
  58. outputs.emplace_back(tw->m_tensor);
  59. }
  60. return outputs;
  61. }
  62. } // namespace mgb::imperative::python

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台