GitOrigin-RevId: 4edc38eaf2
tags/v1.2.0
| @@ -20,4 +20,4 @@ class Const: | |||
| def __call__(self, *reference): | |||
| Wrapper = type(reference[0]) | |||
| return (Wrapper(self.value, self.dtype, self.device),) | |||
| return (Wrapper(self.value, self.dtype, self.device, True),) | |||
| @@ -19,10 +19,11 @@ import numpy as np | |||
| from ...utils.comp_graph_tools import set_priority_to_id as _set_priority_to_id | |||
| from .. import _imperative_rt | |||
| from .._imperative_rt import GraphOptimizeOptions | |||
| from .._imperative_rt.core2 import apply, set_cpp_apply_backward_varnode | |||
| from .._imperative_rt.ops import BackwardGraph | |||
| from .._wrap import device as as_device | |||
| from ..ops.builtin import OpDef | |||
| from .core import OpBase, TensorBase, apply | |||
| from .core import OpBase, TensorBase | |||
| class Graph(_imperative_rt.ComputingGraph): | |||
| @@ -269,9 +270,8 @@ def optimize_for_inference(dest_vars, **kwargs): | |||
| if kwargs: | |||
| raise ValueError("unknown options: %s" % list(kwargs)) | |||
| res_vars = _imperative_rt.optimize_for_inference( | |||
| [i._node for i in dest_vars], inference_options | |||
| ) | |||
| dest_vars = [var._node for var in dest_vars] | |||
| res_vars = _imperative_rt.optimize_for_inference(dest_vars, inference_options) | |||
| return [VarNode(i) for i in res_vars] | |||
| @@ -437,19 +437,25 @@ def _unwrap(x): | |||
| return x | |||
| @apply.register() | |||
| def _(op: OpDef, *args: VarNode): | |||
| def apply_normal_op(op: OpDef, *args: VarNode): | |||
| outputs = _imperative_rt.invoke_op(op, _unwrap(args)) | |||
| return _wrap(outputs) | |||
| @apply.register() | |||
| def _(op: BackwardGraph, *args: VarNode): | |||
| def apply_backward_varnode(op: BackwardGraph, *args: VarNode): | |||
| assert args | |||
| graph = args[0].graph | |||
| return BackwardGraph.interpret( | |||
| op, lambda op, args: apply(op, *args), graph._make_const_for_backward, args | |||
| outputs = op.interpret( | |||
| op, | |||
| lambda op, args: apply_normal_op(op, *args), | |||
| graph._make_const_for_backward, | |||
| args, | |||
| ) | |||
| outputs = [o._node if hasattr(o, "_node") else o for o in outputs] | |||
| return outputs | |||
| set_cpp_apply_backward_varnode(apply_backward_varnode) | |||
| def input_callback(callback, *args, device=None, dtype=None, shape=None, graph=None): | |||
| @@ -6,5 +6,23 @@ | |||
| # Unless required by applicable law or agreed to in writing, | |||
| # software distributed under the License is distributed on an | |||
| # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| from ..core._imperative_rt.core2 import ( | |||
| set_cpp_apply_compiled_mode, | |||
| set_cpp_apply_const_compiled_mode, | |||
| set_cpp_apply_const_with_tracing, | |||
| set_cpp_apply_with_tracing, | |||
| ) | |||
| from .sublinear_memory_config import SublinearMemoryConfig | |||
| from .tracing import exclude_from_trace, trace | |||
| from .tracing import ( | |||
| apply_compiled_mode, | |||
| apply_const_compiled_mode, | |||
| apply_const_with_tracing, | |||
| apply_with_tracing, | |||
| exclude_from_trace, | |||
| trace, | |||
| ) | |||
| set_cpp_apply_with_tracing(apply_with_tracing) | |||
| set_cpp_apply_const_with_tracing(apply_const_with_tracing) | |||
| set_cpp_apply_compiled_mode(apply_compiled_mode) | |||
| set_cpp_apply_const_compiled_mode(apply_const_compiled_mode) | |||
| @@ -18,8 +18,20 @@ import weakref | |||
| import numpy as np | |||
| from ..core._imperative_rt import GraphProfiler | |||
| from ..core._imperative_rt.core2 import Tensor | |||
| from ..core._imperative_rt import GraphProfiler, common, put | |||
| from ..core._imperative_rt.core2 import Tensor as RawTensor | |||
| from ..core._imperative_rt.core2 import ( | |||
| TensorWeakRef, | |||
| apply, | |||
| call_level, | |||
| set_compiled, | |||
| set_symbolic, | |||
| set_tracing, | |||
| skip_tracing, | |||
| unset_compiled, | |||
| unset_symbolic, | |||
| unset_tracing, | |||
| ) | |||
| from ..core._imperative_rt.ops import ( | |||
| CollectiveComm, | |||
| GaussianRNG, | |||
| @@ -29,10 +41,9 @@ from ..core._imperative_rt.ops import ( | |||
| ) | |||
| from ..core._trace_option import set_symbolic_shape | |||
| from ..core._wrap import device as as_device | |||
| from ..core.ops.builtin import OpDef | |||
| from ..core.ops.special import Const | |||
| from ..core.tensor import megbrain_graph as G | |||
| from ..core.tensor.core import OpBase, TensorBase, TensorWrapperBase, apply | |||
| from ..core.tensor.raw_tensor import OpDef, RawTensor, as_raw_tensor | |||
| from .sublinear_memory_config import SublinearMemoryConfig | |||
| @@ -45,7 +56,6 @@ class TraceMismatchError(RuntimeError): | |||
| active_trace = None | |||
| skip_tracing = False | |||
| def is_tracing(): | |||
| @@ -63,11 +73,13 @@ def exclude_from_trace(): | |||
| return | |||
| try: | |||
| skip_tracing = True | |||
| unset_tracing() | |||
| if active_trace is not None: | |||
| active_trace._begin_excluded_region() | |||
| yield | |||
| finally: | |||
| skip_tracing = False | |||
| set_tracing() | |||
| class TensorInfo: | |||
| @@ -75,9 +87,6 @@ class TensorInfo: | |||
| # collected attributes | |||
| "external", | |||
| "exported", | |||
| "data_read", | |||
| "shape_read", | |||
| "value_read", | |||
| "device", | |||
| "dtype", | |||
| "shape", | |||
| @@ -93,9 +102,6 @@ class TensorInfo: | |||
| def __init__(self): | |||
| self.exported = None | |||
| self.data_read = None | |||
| self.shape_read = None | |||
| self.value_read = None | |||
| self.bound_data = None | |||
| self.data_setter = None | |||
| @@ -147,6 +153,8 @@ class trace: | |||
| self._profiler = None | |||
| self._graph_opt_level = opt_level | |||
| self._symbolic_shape = symbolic_shape | |||
| self._handle2tensors = {} | |||
| self._handle2compiledtensors = {} | |||
| self._reset() | |||
| @@ -158,9 +166,9 @@ class trace: | |||
| self._graph = None | |||
| self._need_reset_nodes = None | |||
| self._lazy_eval_graph = None | |||
| self._lazy_eval_tensors = weakref.WeakSet() | |||
| self._lazy_eval_tensors = set() | |||
| self._lazy_eval_links = None | |||
| self._active_tensors = weakref.WeakSet() | |||
| self._active_tensors = set() | |||
| self._tensor_remaps = None | |||
| self._inputs_to_restore = None | |||
| self._arg_bindings = None | |||
| @@ -220,66 +228,72 @@ class trace: | |||
| ) | |||
| info.data_setter.set_value(x._dev_tensor()) | |||
| else: | |||
| if x.__class__ is not CompiledTensorProxy: | |||
| if x not in self._tensor_remaps: | |||
| raise TraceMismatchError( | |||
| "unexpected capture: trying to use an external tensor as " | |||
| "input, but that input was an internal tensor last time" | |||
| ) | |||
| else: | |||
| x = self._tensor_remaps[x] | |||
| if x._CompiledTensorProxy__handle != h: | |||
| raise TraceMismatchError( | |||
| "mis-wiring: input edge to an data flow " | |||
| "graph node is different from last time" | |||
| ) | |||
| pass | |||
| # if x.__class__ is not CompiledTensorProxy: | |||
| # if x not in self._tensor_remaps: | |||
| # raise TraceMismatchError( | |||
| # "unexpected capture: trying to use an external tensor as " | |||
| # "input, but that input was an internal tensor last time" | |||
| # ) | |||
| # else: | |||
| # x = self._tensor_remaps[x] | |||
| # if x._CompiledTensorProxy__handle != h: | |||
| # raise TraceMismatchError( | |||
| # "mis-wiring: input edge to an data flow " | |||
| # "graph node is different from last time" | |||
| # ) | |||
| self._pc += 1 | |||
| outputs = tuple([CompiledTensorProxy(h) for h in ohandles]) | |||
| self._active_tensors.update(outputs) | |||
| for h in ohandles: | |||
| t = CompiledTensorProxy(h) | |||
| t._dev_tensor() | |||
| self._handle2compiledtensors[h] = t | |||
| outputs = [self._handle2tensors[h] for h in ohandles] | |||
| self._active_tensors.update([TensorWeakRef(o) for o in outputs]) | |||
| return outputs | |||
| def _apply_const(self, op, args): | |||
| def _apply_const(self, value, dtype, device): | |||
| assert not self._untraced | |||
| # check against trace | |||
| if self._pc >= len(self._seq): | |||
| raise TraceMismatchError("trace should end here, but more op observed") | |||
| record = self._seq[self._pc] | |||
| op_, ihandles, ohandles = record | |||
| assert isinstance(op_, Const) | |||
| eq = op_.value == op.value | |||
| if not isinstance(eq, bool): | |||
| eq = all(eq) | |||
| if not eq: | |||
| raise TraceMismatchError( | |||
| "const tensor violated: got a different tensor this time" | |||
| ) | |||
| assert isinstance(op_, str) and op_ == "Const" | |||
| # TODO : assert on const value | |||
| # eq = value == self._tinfo[ohandles[0]].bound_data.numpy() | |||
| # if not isinstance(eq, bool): | |||
| # eq = all(eq) | |||
| # if not eq: | |||
| # raise TraceMismatchError( | |||
| # "const tensor violated: got a different tensor this time" | |||
| # ) | |||
| self._pc += 1 | |||
| (h,) = ohandles | |||
| outputs = tuple([self._tinfo[h].bound_data]) | |||
| outputs = [self._tinfo[h].bound_data] | |||
| return outputs | |||
| def _record_op(self, op, inputs, outputs): | |||
| if skip_tracing: | |||
| for x in inputs: | |||
| h = getattr(x, "_TraceMixin__handle", None) | |||
| if h is not None: | |||
| self._tinfo[h].data_read = True | |||
| h = getattr(x, "mixin_handle", -1) | |||
| if h >= 0: | |||
| x.data_read = True | |||
| return | |||
| ihandles = [] | |||
| for x in inputs: | |||
| h = getattr(x, "_TraceMixin__handle", None) | |||
| if h is None or (not self._capture_as_const and self._tinfo[h].exported): | |||
| h = getattr(x, "mixin_handle", -1) | |||
| if h < 0 or (not self._capture_as_const and self._tinfo[h].exported): | |||
| h, info = self._new_handle() | |||
| info.external = True | |||
| info.device = x.device | |||
| info.dtype = x.dtype | |||
| info.shape = x.shape | |||
| if self._capture_as_const: | |||
| info.bound_data = x | |||
| info.bound_data = RawTensor(x.numpy(), x.dtype, x.device, False) | |||
| ihandles.append(h) | |||
| @@ -288,17 +302,18 @@ class trace: | |||
| h, info = self._new_handle() | |||
| ohandles.append(h) | |||
| info.external = False | |||
| TraceMixin._TraceMixin__inject(x, h) | |||
| x.mixin_handle = h | |||
| self._handle2tensors[h] = x | |||
| self._seq.append((op, tuple(ihandles), tuple(ohandles))) | |||
| self._active_tensors.update(outputs) | |||
| self._active_tensors.update([TensorWeakRef(o) for o in outputs]) | |||
| def _record_const(self, op, outputs): | |||
| def _record_const(self, outputs): | |||
| if skip_tracing: | |||
| (x,) = outputs | |||
| h = getattr(x, "_TraceMixin__handle", None) | |||
| if h is not None: | |||
| self._tinfo[h].data_read = True | |||
| h = getattr(x, "mixin_handle", -1) | |||
| if h >= 0: | |||
| x.data_read = True | |||
| return | |||
| (x,) = outputs | |||
| @@ -310,8 +325,9 @@ class trace: | |||
| info.shape = x.shape | |||
| info.bound_data = x | |||
| info.is_const = True | |||
| TraceMixin._TraceMixin__inject(x, h) | |||
| self._seq.append((op, tuple(), tuple(ohandles))) | |||
| x.mixin_handle = h | |||
| self._handle2tensors[h] = x | |||
| self._seq.append(("Const", tuple(), tuple(ohandles))) | |||
| def _set_active(self, active: bool): | |||
| global active_trace | |||
| @@ -324,11 +340,8 @@ class trace: | |||
| active_trace = None | |||
| def _init_trace(self, symbolic: bool): | |||
| apply.enable(apply_with_tracing) | |||
| apply.enable(apply_const_with_tracing) | |||
| if symbolic: | |||
| apply.enable(apply_symbolic_mode) | |||
| apply.enable(apply_const_symbolic_mode) | |||
| set_symbolic() | |||
| self._lazy_eval_graph = G.Graph() | |||
| self._apply_graph_options(self._lazy_eval_graph) | |||
| self._lazy_eval_links = () | |||
| @@ -339,10 +352,7 @@ class trace: | |||
| return escaped_tensors | |||
| def _lazy_eval(self, lazy_eval_graph, lazy_eval_tensors, lazy_eval_links): | |||
| readers = [ | |||
| G.OutputNode(x._LazyEvalTensor__varnode).outputs[0] | |||
| for x in lazy_eval_tensors | |||
| ] | |||
| readers = [G.OutputNode(x()._varnode).outputs[0] for x in lazy_eval_tensors] | |||
| self._apply_graph_options(lazy_eval_graph) | |||
| # FIXME | |||
| if self._graph_opt_level is not None: | |||
| @@ -353,20 +363,22 @@ class trace: | |||
| lazy_eval_graph.compile(*lazy_eval_links, *readers) | |||
| lazy_eval_graph() | |||
| for r, x in zip(readers, lazy_eval_tensors): | |||
| assign_raw_tensor(x, as_raw_tensor(r.op.get_value())) | |||
| x()._handle = RawTensor(r.op.get_value())._handle | |||
| @contextlib.contextmanager | |||
| def _setup(self): | |||
| interrupted = False | |||
| def do_enter(): | |||
| set_tracing() | |||
| self._save_symbolic_shape = set_symbolic_shape(self._symbolic_shape) | |||
| self._set_active(True) | |||
| if self._untraced: | |||
| self._init_trace(self._symbolic) | |||
| else: | |||
| apply.enable(apply_compiled_mode) | |||
| apply.enable(apply_const_compiled_mode) | |||
| # disable symbolic mode | |||
| unset_symbolic() | |||
| set_compiled() | |||
| if self._graph is None: | |||
| self._compile() | |||
| self._graph.execute() | |||
| @@ -375,12 +387,12 @@ class trace: | |||
| escaped_tensors = self._take_escaped_tensors() | |||
| if self._untraced: | |||
| for x in escaped_tensors: | |||
| info = self._tinfo[x._TraceMixin__handle] | |||
| info.data_read = True | |||
| x._TraceMixin__restore() | |||
| info = self._tinfo[x().mixin_handle] | |||
| x().data_read = True | |||
| x().mixin_handle = -1 | |||
| if self._inputs_to_restore: | |||
| for x in self._inputs_to_restore: | |||
| x._TraceMixin__restore() | |||
| x.mixin_handle = -1 | |||
| if self._symbolic and ( | |||
| self._lazy_eval_tensors or self._lazy_eval_links | |||
| ): | |||
| @@ -399,7 +411,7 @@ class trace: | |||
| if self._pc == len(self._seq): | |||
| for x in escaped_tensors: | |||
| try: | |||
| assign_raw_tensor(x, as_raw_tensor(x._dev_tensor())) | |||
| assign_raw_tensor(x(), RawTensor(x()._dev_tensor())) | |||
| except TraceMismatchError: | |||
| # TraceMismatchError thrown in do_exit | |||
| pass | |||
| @@ -409,22 +421,20 @@ class trace: | |||
| # reset status | |||
| self._pc = 0 | |||
| self._tensor_remaps = None | |||
| apply.disable(apply_with_tracing) | |||
| apply.disable(apply_const_with_tracing) | |||
| apply.disable(apply_symbolic_mode) | |||
| apply.disable(apply_const_symbolic_mode) | |||
| apply.disable(apply_compiled_mode) | |||
| apply.disable(apply_const_compiled_mode) | |||
| self._set_active(False) | |||
| # Restore global variable | |||
| set_symbolic_shape(self._save_symbolic_shape) | |||
| unset_compiled() | |||
| unset_symbolic() | |||
| unset_tracing() | |||
| def do_exit(): | |||
| unset_tracing() | |||
| if not self._untraced and self._pc != len(self._seq): | |||
| raise TraceMismatchError("premature end") | |||
| if not self._symbolic or not self._untraced: | |||
| for x in self._active_tensors: | |||
| x._dev_tensor() | |||
| x()._dev_tensor() | |||
| x().mixin_handle = -1 | |||
| try: | |||
| do_enter() | |||
| @@ -447,9 +457,9 @@ class trace: | |||
| # conditionally reading a compiled tensor in excluded region | |||
| # is permitted, so we have to assume every tensor might be read | |||
| for x in self._active_tensors: | |||
| info = self._tinfo[x._TraceMixin__handle] | |||
| info = self._tinfo[x().mixin_handle] | |||
| info.exported = True | |||
| info.data_read = True | |||
| x().data_read = True | |||
| def _apply_graph_options(self, graph): | |||
| @@ -503,7 +513,7 @@ class trace: | |||
| in_out_links += opnode.outputs[1:] | |||
| for op, ihandles, ohandles in self._seq: | |||
| if isinstance(op, Const): | |||
| if isinstance(op, str) and op == "Const": | |||
| assert len(ihandles) == 0 | |||
| (h,) = ohandles | |||
| info = self._tinfo[h] | |||
| @@ -554,7 +564,10 @@ class trace: | |||
| io_links = (info.varnode,) | |||
| ivars.append(info.varnode) | |||
| ivars = [RawTensor(ivar) for ivar in ivars] | |||
| ovars = apply(op, *ivars) | |||
| ovars = [x._varnode for x in ovars] | |||
| if require_links and len(ovars) > 0: | |||
| io_links = (ovars[0],) | |||
| assert len(ovars) == len(ohandles) | |||
| @@ -568,7 +581,8 @@ class trace: | |||
| readers.append(opnode.outputs[0]) | |||
| in_out_links = opnode.outputs | |||
| if info.data_read: | |||
| x = self._handle2tensors[h] | |||
| if x.data_read: | |||
| # Shape can be obtained from data so doesn't need its own | |||
| # output node. On the other hand, value is read separately | |||
| # to leverage eager h2d copy | |||
| @@ -581,6 +595,7 @@ class trace: | |||
| if info.shape_read: | |||
| opnode = info.shape_reader = G.AttrOutputNode(v, *in_out_links) | |||
| add_reader(opnode) | |||
| # FIXME | |||
| if self._graph_opt_level is not None: | |||
| graph.options.graph_opt_level = self._graph_opt_level | |||
| @@ -593,18 +608,6 @@ class trace: | |||
| for opnode in self._need_reset_nodes: | |||
| opnode.reset() | |||
| def _require_shape(self, handle): | |||
| info = self._tinfo[handle] | |||
| info.shape_read = True | |||
| def _require_value(self, handle): | |||
| info = self._tinfo[handle] | |||
| info.value_read = True | |||
| def _require_data(self, handle): | |||
| info = self._tinfo[handle] | |||
| info.data_read = True | |||
| def __call__(self, *args, **kwargs): | |||
| if is_tracing(): | |||
| return self.__wrapped__(*args, **kwargs) | |||
| @@ -728,8 +731,9 @@ class trace: | |||
| dtype=info.dtype, device=dumped_device, shape=info.shape or (1,), name=k | |||
| ) | |||
| set_tracing() | |||
| for op, ihandles, ohandles in self._seq: | |||
| if isinstance(op, Const): | |||
| if isinstance(op, str) and op == "Const": | |||
| assert len(ihandles) == 0 | |||
| (h,) = ohandles | |||
| info = self._tinfo[h] | |||
| @@ -750,7 +754,9 @@ class trace: | |||
| info.bound_data.numpy(), dtype=info.dtype, device=dumped_device | |||
| ) | |||
| ivars.append(h2v[h]) | |||
| ivars = [RawTensor(ivar) for ivar in ivars] | |||
| ovars = apply(op, *ivars) | |||
| ovars = [x._varnode for x in ovars] | |||
| assert len(ovars) == len(ohandles) | |||
| h2v.update(zip(ohandles, ovars)) | |||
| @@ -761,6 +767,7 @@ class trace: | |||
| v.name = output_names[i] | |||
| dest_vars.append(v) | |||
| dest_vars = [G.VarNode(var) for var in dest_vars] | |||
| if optimize_for_inference: | |||
| dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||
| @@ -782,15 +789,15 @@ class trace: | |||
| info.external = False | |||
| info.device = x.device | |||
| info.dtype = x.dtype | |||
| info.shape = x.shape | |||
| TraceMixin._TraceMixin__inject(x, h) | |||
| info.shape = x.numpy().shape | |||
| x.mixin_handle = h | |||
| self._handle2tensors[h] = x | |||
| self._inputs_to_restore.append(x) | |||
| return h | |||
| self._arg_bindings = [] | |||
| for i, x in enumerate(args): | |||
| x = find_raw_tensor(x) | |||
| if x is None: | |||
| if not isinstance(x, RawTensor): | |||
| raise TypeError( | |||
| "positional arguments should all be tensor " | |||
| "but args[%d] cannot be recognized as one" % i | |||
| @@ -799,8 +806,7 @@ class trace: | |||
| self._kwarg_bindings = {} | |||
| for k, x in kwargs.items(): | |||
| x = find_raw_tensor(x) | |||
| if x is not None: | |||
| if isinstance(x, RawTensor): | |||
| self._kwarg_bindings[k] = record_input(x) | |||
| else: | |||
| if len(args) != len(self._arg_bindings): | |||
| @@ -809,8 +815,7 @@ class trace: | |||
| self._tensor_remaps = {} | |||
| for i, (h, x) in enumerate(zip(self._arg_bindings, args)): | |||
| x = find_raw_tensor(x) | |||
| if x is None: | |||
| if not isinstance(x, RawTensor): | |||
| raise TypeError( | |||
| "positional arguments should all be tensor " | |||
| "but args[%d] cannot be recognized as one" % i | |||
| @@ -825,8 +830,7 @@ class trace: | |||
| kwargs_tensors = {} | |||
| for k, x in kwargs.items(): | |||
| x = find_raw_tensor(x) | |||
| if x is not None: | |||
| if isinstance(x, RawTensor): | |||
| kwargs_tensors[k] = x | |||
| if set(kwargs_tensors) != set(self._kwarg_bindings): | |||
| too_many = set(kwargs_tensors) - set(self._kwarg_bindings) | |||
| @@ -877,18 +881,17 @@ class trace: | |||
| self._output_bindings = [] | |||
| for i, x in enumerate(outputs): | |||
| x = find_raw_tensor(x) | |||
| if x is None: | |||
| if not isinstance(x, RawTensor): | |||
| raise TypeError("every item of return value should be tensor") | |||
| if self._untraced: | |||
| if not isinstance(x, TraceMixin): | |||
| h = x.mixin_handle | |||
| if h < 0: | |||
| raise RuntimeError("output is not computed from inputs") | |||
| h = x._TraceMixin__handle | |||
| self._output_bindings.append(h) | |||
| else: | |||
| if not isinstance(x, CompiledTensorProxy): | |||
| h = x.mixin_handle | |||
| if h not in self._handle2compiledtensors: | |||
| raise RuntimeError("output is not computed from inputs") | |||
| h = x._CompiledTensorProxy__handle | |||
| if h != self._output_bindings[i]: | |||
| raise TraceMismatchError( | |||
| "retval[%s] is a different tensor than last time" | |||
| @@ -912,7 +915,7 @@ class trace: | |||
| ) | |||
| class CompiledTensorProxy(RawTensor): | |||
| class CompiledTensorProxy: | |||
| """ | |||
| Duck-typed RawTensor | |||
| """ | |||
| @@ -924,6 +927,8 @@ class CompiledTensorProxy(RawTensor): | |||
| self.__shape = None | |||
| self.__data = None | |||
| self.__value = None | |||
| self.__tensor = active_trace._handle2tensors[handle] | |||
| self.__tensor.mixin_handle = handle | |||
| @property | |||
| def dtype(self): | |||
| @@ -938,19 +943,19 @@ class CompiledTensorProxy(RawTensor): | |||
| if self._isscalar: | |||
| return () | |||
| if self.__shape is None: | |||
| if self.__info.shape_read: | |||
| if self.__tensor.shape_read: | |||
| self.__shape = self.__info.shape_reader.get_value().shape | |||
| elif self.__info.data_read: | |||
| self.__shape = self._dev_tensor().shape | |||
| elif self.__tensor.data_read: | |||
| self.__shape = self.__tensor._dev_tensor().shape | |||
| else: | |||
| raise TraceMismatchError("shape of this tensor is not read in trace") | |||
| return self.__shape | |||
| def numpy(self): | |||
| if self.__value is None: | |||
| if self.__info.value_read: | |||
| if self.__tensor.value_read: | |||
| self.__value = self.__info.value_reader.get_value() | |||
| elif self.__info.data_read: | |||
| elif self.__tensor.data_read: | |||
| self.__value = self._dev_tensor().numpy() | |||
| else: | |||
| raise TraceMismatchError("value of this tensor is not read in trace") | |||
| @@ -960,9 +965,11 @@ class CompiledTensorProxy(RawTensor): | |||
| def _dev_tensor(self): | |||
| if self.__data is None: | |||
| if not self.__info.data_read: | |||
| if not self.__tensor.data_read: | |||
| raise TraceMismatchError("raw data of this tensor is not read in trace") | |||
| self.__data = self.__info.data_reader.get_value() | |||
| self.__tensor._reset(RawTensor(self.__data)) | |||
| self.__tensor.mixin_handle = self.__handle | |||
| return self.__data | |||
| def _drop(self): | |||
| @@ -975,132 +982,31 @@ class CompiledTensorProxy(RawTensor): | |||
| return | |||
| def __del__(self): | |||
| if self.__info.shape_read and self.__shape is not None: | |||
| if self.__tensor.shape_read and self.__shape is not None: | |||
| self.__info.shape_reader.drop_value() | |||
| if self.__info.value_read and self.__value is not None: | |||
| self.__info.value_reader.drop_value() | |||
| if self.__info.data_read and self.__data is not None: | |||
| # if self.__tensor.value_read and self.__value is not None: | |||
| # self.__info.value_reader.drop_value() | |||
| if self.__tensor.data_read and self.__data is not None: | |||
| self.__info.data_reader.drop_value() | |||
| class LazyEvalTensor(RawTensor): | |||
| def __init__(self, varnode, isscalar=False): | |||
| super().__init__() | |||
| self.__varnode = varnode | |||
| self._isscalar = isscalar | |||
| @property | |||
| def dtype(self): | |||
| return self.__varnode.dtype | |||
| @property | |||
| def device(self): | |||
| return self.__varnode.device | |||
| @property | |||
| def shape(self): | |||
| if self._isscalar: | |||
| return () | |||
| return self.__varnode.shape | |||
| def numpy(self): | |||
| ret = self.__varnode.value | |||
| if self._isscalar: | |||
| ret = ret.squeeze() | |||
| return ret | |||
| def _drop(self): | |||
| return | |||
| def _swap_in(self): | |||
| return | |||
| def _swap_out(self): | |||
| return | |||
| def _dev_tensor(self): | |||
| raise RuntimeError("cannot access data during symbolic tracing") | |||
| class TraceMixin: | |||
| __subclass_cache = {} | |||
| def __inject(self, handle): | |||
| cache = __class__.__subclass_cache | |||
| cls = self.__class__ | |||
| subcls = cache.get(cls) | |||
| if subcls is None: | |||
| subcls = cache[cls] = type("Traced" + cls.__name__, (__class__, cls), {}) | |||
| self.__class__ = subcls | |||
| self.__handle = handle | |||
| self.__cls = cls | |||
| return self | |||
| def __restore(self): | |||
| cls = self.__cls | |||
| del self.__handle | |||
| del self.__cls | |||
| self.__class__ = cls | |||
| return self | |||
| @property | |||
| def shape(self): | |||
| if not skip_tracing: | |||
| active_trace._require_shape(self.__handle) | |||
| return super().shape | |||
| def numpy(self): | |||
| if not skip_tracing: | |||
| active_trace._require_value(self.__handle) | |||
| return super().numpy() | |||
| def _dev_tensor(self): | |||
| if not skip_tracing: | |||
| active_trace._require_data(self.__handle) | |||
| return super()._dev_tensor() | |||
| def _drop(self): | |||
| return | |||
| def _swap_in(self): | |||
| return | |||
| def _swap_out(self): | |||
| return | |||
| class TracedRawTensor(TraceMixin, RawTensor): | |||
| pass | |||
| class TracedLazyTensor(TraceMixin, LazyEvalTensor): | |||
| pass | |||
| def assign_raw_tensor(lhs, rhs): | |||
| handle = rhs._handle | |||
| # Keep isscalar of lhs | |||
| isscalar = lhs._isscalar | |||
| rhs.__dict__.clear() | |||
| lhs.__dict__.clear() | |||
| lhs.__class__ = RawTensor | |||
| lhs.__init__(handle, isscalar=isscalar) | |||
| lhs.__init__(rhs) | |||
| # this hook turns RawTensor into LazyEvalTensor | |||
| @apply.register() | |||
| # this hook turns RawTensor into LazyEvalTensor(varnode) | |||
| def apply_symbolic_mode(op: OpDef, *args: RawTensor): | |||
| graph = active_trace._lazy_eval_graph | |||
| ivars = [] | |||
| for x in args: | |||
| var = getattr(x, "_LazyEvalTensor__varnode", None) | |||
| var = getattr(x, "_varnode", None) | |||
| if var: | |||
| ivars.append(var) | |||
| else: | |||
| data_setter = G.InputNode( | |||
| device=x.device, | |||
| dtype=x.dtype, | |||
| shape=x.shape or (1,), | |||
| shape=x.numpy().shape or (1,), | |||
| graph=graph, | |||
| use_static_shape=True, | |||
| ) | |||
| @@ -1119,108 +1025,75 @@ def apply_symbolic_mode(op: OpDef, *args: RawTensor): | |||
| ivars[0] = opnode.outputs[0] | |||
| active_trace._lazy_eval_links = (ivars[0],) | |||
| ovars = apply(op, *ivars) | |||
| ivars = [ | |||
| RawTensor(ivar._node) if hasattr(ivar, "_node") else RawTensor(ivar) | |||
| for ivar in ivars | |||
| ] | |||
| unset_symbolic() | |||
| outputs = apply(op, *ivars) | |||
| set_symbolic() | |||
| if require_links: | |||
| active_trace._lazy_eval_links = (ovars[0],) | |||
| active_trace._lazy_eval_links = (outputs[0]._varnode,) | |||
| outputs = [LazyEvalTensor(v) for v in ovars] | |||
| active_trace._lazy_eval_tensors.update(outputs) | |||
| active_trace._lazy_eval_tensors.update([TensorWeakRef(o) for o in outputs]) | |||
| return outputs | |||
| apply.disable(apply_symbolic_mode) | |||
| @apply.register() | |||
| def apply_const_symbolic_mode(op: Const, *args: RawTensor): | |||
| def apply_const_symbolic_mode(value, dtype, device): | |||
| graph = active_trace._lazy_eval_graph | |||
| ret = LazyEvalTensor( | |||
| graph.make_const(op.value, dtype=op.dtype, device=op.device), isscalar=True | |||
| ) | |||
| active_trace._lazy_eval_tensors.add(ret) | |||
| # don't need to unset tracing | |||
| # because varnode construction will ignore tracing flag | |||
| ret = RawTensor(graph.make_const(value, dtype=dtype, device=device)) | |||
| active_trace._lazy_eval_tensors.add(TensorWeakRef(ret)) | |||
| return (ret,) | |||
| apply.disable(apply_const_symbolic_mode) | |||
| @apply.register() | |||
| def apply_compiled_mode(op: OpDef, *args: RawTensor): | |||
| if skip_tracing: | |||
| args = [ | |||
| as_raw_tensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||
| RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||
| for x in args | |||
| ] | |||
| return apply.super(op, *args) | |||
| unset_tracing() | |||
| ret = apply(op, *args) | |||
| set_tracing() | |||
| return ret | |||
| return active_trace._apply_op(op, args) | |||
| apply.disable(apply_compiled_mode) | |||
| @apply.register() | |||
| def apply_const_compiled_mode(op: Const, *args: RawTensor): | |||
| def apply_const_compiled_mode(value, dtype, device, is_const): | |||
| if skip_tracing: | |||
| args = [ | |||
| as_raw_tensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||
| RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||
| for x in args | |||
| ] | |||
| return apply.super(op, *args) | |||
| return active_trace._apply_const(op, args) | |||
| apply.disable(apply_const_compiled_mode) | |||
| unset_tracing() | |||
| ret = RawTensor(value, dtype, device, False) | |||
| set_tracing() | |||
| return ret | |||
| return active_trace._apply_const(value, dtype, device) | |||
| # this hook injects TraceMixin | |||
| @apply.register() | |||
| def apply_with_tracing(op: OpDef, *args: RawTensor): | |||
| outputs = apply.super(op, *args) | |||
| active_trace._record_op(op, args, outputs) | |||
| return outputs | |||
| apply.disable(apply_with_tracing) | |||
| @apply.register() | |||
| def apply_const_with_tracing(op: Const, *args: RawTensor): | |||
| outputs = apply.super(op, *args) | |||
| active_trace._record_const(op, outputs) | |||
| return outputs | |||
| apply.disable(apply_const_with_tracing) | |||
| class BrokenRawTensor(RawTensor): | |||
| def __getattribute__(self, _): | |||
| raise RuntimeError("broken due to misuse of tracing") | |||
| def __setattr__(self, *_): | |||
| raise RuntimeError("broken due to misuse of tracing") | |||
| @functools.singledispatch | |||
| def find_raw_tensor(x): | |||
| return None | |||
| @find_raw_tensor.register(RawTensor) | |||
| def _(x): | |||
| return x | |||
| if active_trace._symbolic: | |||
| outputs = apply_symbolic_mode(op, *args) | |||
| else: | |||
| unset_tracing() | |||
| outputs = apply(op, *args) | |||
| set_tracing() | |||
| @find_raw_tensor.register(TensorWrapperBase) | |||
| def _(x): | |||
| x = getattr(x, "__wrapped__", None) | |||
| if x is not None: | |||
| return find_raw_tensor(x) | |||
| active_trace._record_op(op, args, outputs) | |||
| return list(outputs) | |||
| @find_raw_tensor.register(Tensor) | |||
| def _(x): | |||
| x = getattr(x, "_data", None) | |||
| if x is not None: | |||
| return find_raw_tensor(x) | |||
| def apply_const_with_tracing(value, dtype, device, is_const): | |||
| if active_trace._symbolic: | |||
| outputs = apply_const_symbolic_mode(value, dtype, device) | |||
| else: | |||
| unset_tracing() | |||
| outputs = (RawTensor(value, dtype, device, False),) | |||
| set_tracing() | |||
| active_trace._record_const(outputs) | |||
| return list(outputs) | |||
| @@ -28,7 +28,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
| dmap_callback = None | |||
| q_dict = {"mode": None, "scale": None, "zero_point": None} | |||
| def __new__(cls, data, dtype=None, device=None): | |||
| def __new__(cls, data, dtype=None, device=None, is_const=False): | |||
| if device is None: | |||
| cn = get_default_device() | |||
| elif isinstance(device, str): | |||
| @@ -40,6 +40,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
| assert isinstance(device, CompNode) | |||
| cn = device | |||
| # import pdb; pdb.set_trace() | |||
| if isinstance(data, _Tensor): | |||
| obj = _Tensor.__new__(cls, data) | |||
| else: | |||
| @@ -47,7 +48,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
| if 0 in data.strides: | |||
| data = data.squeeze().reshape(data.shape) | |||
| obj = _Tensor.__new__(cls, data, dtype, cn) | |||
| obj = _Tensor.__new__(cls, data, dtype, cn, is_const) | |||
| return obj | |||
| @property | |||
| @@ -296,7 +296,9 @@ void accum_grad(std::shared_ptr<Tensor>& grad, std::shared_ptr<Tensor>&& delta) | |||
| Tensor* args[2] = {grad.get(), delta.get()}; | |||
| ctx.args = args; | |||
| ctx.flags = grad->m_flags | delta->m_flags; | |||
| if (is_tracing) { | |||
| ctx.flags |= Tensor::Flags::TRACE; | |||
| } | |||
| grad = apply(ctx)[0]; | |||
| } | |||
| @@ -354,6 +356,9 @@ void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWr | |||
| } | |||
| ctx.args = args; | |||
| if (is_tracing) | |||
| ctx.flags |= Tensor::Flags::TRACE; | |||
| auto grads = apply(ctx); | |||
| size_t j = 0; | |||
| @@ -11,8 +11,10 @@ | |||
| #include "./tensor.h" | |||
| #include "./grad.h" | |||
| #include "./trace.h" | |||
| #include "./common.h" | |||
| #include "./numpy_dtypes.h" | |||
| #include "./graph_rt.h" | |||
| #include <pybind11/numpy.h> | |||
| #include <pybind11/operators.h> | |||
| @@ -23,6 +25,47 @@ namespace mgb::imperative::python { | |||
| std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | |||
| py::object cpp_apply_with_tracing, cpp_apply_const_with_tracing, | |||
| cpp_apply_compiled_mode, cpp_apply_const_compiled_mode; | |||
| py::object cpp_apply_backward_varnode; | |||
| #define REGISTE_APPLY_FUNC(mode) \ | |||
| void set_##mode(py::object pyf) { \ | |||
| mode = pybind11::reinterpret_steal<py::object>(pyf); \ | |||
| } | |||
| REGISTE_APPLY_FUNC(cpp_apply_with_tracing) | |||
| REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing) | |||
| REGISTE_APPLY_FUNC(cpp_apply_compiled_mode) | |||
| REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode) | |||
| REGISTE_APPLY_FUNC(cpp_apply_backward_varnode) | |||
| #undef REGISTE_APPLY_FUNC | |||
| bool is_tracing = false; | |||
| bool is_symbolic = false; | |||
| bool is_compiled = false; | |||
| int64_t call_level = 0; | |||
| #define SET_UNSET_PROP(mode) \ | |||
| void set_##mode() { \ | |||
| is_##mode = true; \ | |||
| } \ | |||
| void unset_##mode() { \ | |||
| is_##mode = false; \ | |||
| } \ | |||
| SET_UNSET_PROP(tracing) | |||
| SET_UNSET_PROP(symbolic) | |||
| SET_UNSET_PROP(compiled) | |||
| #undef SET_UNSET_PROP | |||
| bool skip_tracing = false; | |||
| apply_result_t apply(ApplyContext& ctx) { | |||
| // emulating scalar should be put to specific op's apply, e.g., | |||
| // elementwise, reduce, typecvt. Currently it's still handled at python | |||
| @@ -36,7 +79,7 @@ apply_result_t apply(ApplyContext& ctx) { | |||
| } | |||
| if (ctx.flags & Tensor::Flags::TRACE) { | |||
| // TODO: trace | |||
| return apply_trace(ctx); | |||
| } else { | |||
| SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs); | |||
| for (size_t i = 0; i < ctx.nargs; ++i) { | |||
| @@ -58,7 +101,6 @@ apply_result_t apply(ApplyContext& ctx) { | |||
| PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) { | |||
| try { | |||
| // if (kwnames && PyTuple_GET_SIZE(kwnames)) { | |||
| // PyErr_SetString(PyExc_TypeError, "keyword argument not allowed"); | |||
| // return nullptr; | |||
| @@ -67,6 +109,7 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||
| PyErr_SetString(PyExc_TypeError, "expect Op"); | |||
| return nullptr; | |||
| } | |||
| auto* op = args[0]; | |||
| PyTypeObject* pytype = args[1]->ob_type; | |||
| @@ -79,18 +122,23 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||
| SmallVector<Tensor*, 64> tensors(nargs); | |||
| ctx.args = &tensors[0]; | |||
| ctx.nargs = nargs; | |||
| if (strstr(op->ob_type->tp_name, "BackwardGraph")) { | |||
| ctx.backward = true; | |||
| } | |||
| for (size_t i = 0; i < nargs; ++i) { | |||
| TensorWrapper* tw = TensorWrapper::cast_safe(args[i]); | |||
| if (!tw) { | |||
| if (TensorWrapper* tw = TensorWrapper::cast_safe(args[i])) { | |||
| auto* t = tensors[i] = tw->m_tensor.get(); | |||
| ctx.flags |= t->m_flags; | |||
| } else { | |||
| PyErr_SetString(PyExc_TypeError, "expect Tensor"); | |||
| return nullptr; | |||
| } | |||
| auto* t = tensors[i] = tw->m_tensor.get(); | |||
| ctx.flags |= t->m_flags; | |||
| } | |||
| // TODO: set TRACE flag | |||
| if (is_tracing) { | |||
| ctx.flags |= Tensor::Flags::TRACE; | |||
| } | |||
| auto outputs = apply(ctx); | |||
| size_t nout = outputs.size(); | |||
| @@ -99,7 +147,6 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||
| ret[i] = TensorWrapper::make(pytype, std::move(outputs[i])); | |||
| } | |||
| return ret.release().ptr(); | |||
| } catch (std::exception& e) { | |||
| PyErr_SetString(PyExc_RuntimeError, e.what()); | |||
| return nullptr; | |||
| @@ -122,36 +169,116 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||
| } | |||
| m_tensor = t->m_tensor; | |||
| } else { | |||
| if (nargs != 3) { | |||
| throw py::type_error("expect 3 arguments"); | |||
| } | |||
| py::detail::loader_life_support life_sup; // required to cast DType | |||
| auto data = tup[0].cast<py::array>(); | |||
| DType dtype = tup[1].cast<DType>(); | |||
| CompNode cn = tup[2].cast<CompNode>(); | |||
| interpreter::Interpreter::Handle handle; | |||
| constexpr auto size_threshhold = TensorShape::MAX_NDIM; | |||
| if (data.size() > size_threshhold) { | |||
| handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype)); | |||
| if (nargs == 1) { | |||
| auto arg0 = PyTuple_GetItem(args, 0); | |||
| // for lazy_eval_tensor | |||
| if (strstr(arg0->ob_type->tp_name, "VarNode")) { | |||
| if (PyObject_HasAttrString(arg0, "_node")) { | |||
| arg0 = PyObject_GetAttrString(arg0, "_node"); | |||
| } | |||
| m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>()); | |||
| } else { | |||
| // for DeviceTensorND | |||
| if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) { | |||
| auto dv = py::handle(arg0).cast<DeviceTensorND>(); | |||
| interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv); | |||
| m_tensor = std::make_shared<Tensor>(handle); | |||
| } else { | |||
| throw py::type_error("single argument is not tensor, varnode or devicetensor"); | |||
| } | |||
| } | |||
| } else { | |||
| HostTensorND ret(cn); | |||
| handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype)); | |||
| } | |||
| py::detail::loader_life_support life_sup; // required to cast DType | |||
| auto data = tup[0].cast<py::array>(); | |||
| DType dtype = tup[1].cast<DType>(); | |||
| CompNode cn = tup[2].cast<CompNode>(); | |||
| bool is_const = tup[3].cast<bool>(); | |||
| if (nargs != 4) { | |||
| throw py::type_error("expect 3 arguments"); | |||
| } | |||
| // const op | |||
| if (is_const && is_tracing) { | |||
| py::object pyf; | |||
| if (is_compiled) { | |||
| pyf = cpp_apply_const_compiled_mode; | |||
| } else { | |||
| pyf = cpp_apply_const_with_tracing; | |||
| } | |||
| auto ret = pyf(*tup); | |||
| auto py_ret = py::reinterpret_borrow<py::list>(ret); | |||
| if (auto* t = cast_safe(py_ret[0].ptr())) { | |||
| m_tensor = t->m_tensor; | |||
| } | |||
| return; | |||
| } | |||
| interpreter::Interpreter::Handle handle; | |||
| constexpr auto size_threshhold = TensorShape::MAX_NDIM; | |||
| if (data.size() > size_threshhold) { | |||
| handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype)); | |||
| } else { | |||
| HostTensorND ret(cn); | |||
| handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype)); | |||
| } | |||
| m_tensor = std::make_shared<Tensor>(handle); | |||
| m_tensor = std::make_shared<Tensor>(handle); | |||
| if (data.ndim() == 0) { | |||
| m_tensor->m_flags |= Tensor::Flags::SCALAR; | |||
| if (data.ndim() == 0) { | |||
| m_tensor->m_flags |= Tensor::Flags::SCALAR; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| #define REGISTE_TENSORWRAPPER_FUNC(type, member) \ | |||
| PyObject* TensorWrapper::member() { \ | |||
| return py::cast(m_tensor->m_trace_info.member).release().ptr(); \ | |||
| } \ | |||
| void TensorWrapper::set_##member(PyObject* dest) { \ | |||
| auto py_dest = py::reinterpret_borrow<py::object>(dest); \ | |||
| type real_dest = py_dest.cast<type>(); \ | |||
| m_tensor->m_trace_info.member = real_dest; \ | |||
| } | |||
| REGISTE_TENSORWRAPPER_FUNC(bool, data_read) | |||
| REGISTE_TENSORWRAPPER_FUNC(bool, value_read) | |||
| REGISTE_TENSORWRAPPER_FUNC(bool, shape_read) | |||
| REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle) | |||
| #undef REGISTE_TENSORWRAPPER_FUNC | |||
| PyObject* TensorWrapper::handle() { | |||
| return py::cast(m_tensor->m_handle).release().ptr(); | |||
| } | |||
| void TensorWrapper::set_handle(PyObject* dest) { | |||
| auto py_dest = py::reinterpret_borrow<py::object>(dest); | |||
| SharedHandle real_dest = py_dest.cast<SharedHandle>(); | |||
| auto&& t = std::move(m_tensor->m_handle); | |||
| m_tensor->m_handle = std::move(real_dest); | |||
| } | |||
| PyObject* TensorWrapper::shape() { | |||
| if (!skip_tracing) { | |||
| set_shape_read(py::cast(true). release().ptr()); | |||
| } | |||
| if (m_tensor->m_flags & Tensor::Flags::SCALAR) { | |||
| return PyTuple_New(0); | |||
| } | |||
| auto&& shape = m_tensor->shape(); | |||
| TensorShape shape; | |||
| if (m_tensor->m_var) { | |||
| shape = m_tensor->m_var->shape(); | |||
| } else { | |||
| shape = m_tensor->shape(); | |||
| } | |||
| if (!shape.ndim) { | |||
| Py_RETURN_NONE; | |||
| } | |||
| @@ -164,16 +291,38 @@ PyObject* TensorWrapper::shape() { | |||
| PyObject* TensorWrapper::dtype() { | |||
| if (m_tensor->m_var) { | |||
| return py::cast(m_tensor->m_var->dtype()).release().ptr(); | |||
| } | |||
| return py::cast(m_tensor->dtype()).release().ptr(); | |||
| } | |||
| PyObject* TensorWrapper::device() { | |||
| if (m_tensor->m_var) { | |||
| return py::cast(m_tensor->m_var->comp_node()).release().ptr(); | |||
| } | |||
| return py::cast(m_tensor->comp_node()).release().ptr(); | |||
| } | |||
| PyObject* TensorWrapper::numpy() { | |||
| if (!skip_tracing) { | |||
| set_value_read(py::cast(true).release().ptr()); | |||
| } | |||
| if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) { | |||
| auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager(); | |||
| auto&& type = mgr.get_infer_type(m_tensor->m_var); | |||
| using InferType = cg::static_infer::InferType; | |||
| if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) { | |||
| return nullptr; | |||
| } | |||
| auto* val = mgr.infer_value_fallible(m_tensor->m_var); | |||
| if (!val) { | |||
| return nullptr; | |||
| } | |||
| return py::cast(*val).attr("numpy")().release().ptr(); | |||
| } | |||
| auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get()); | |||
| auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE)); | |||
| if (!arr) return nullptr; | |||
| @@ -184,6 +333,13 @@ PyObject* TensorWrapper::numpy() { | |||
| return arr.release().ptr(); | |||
| } | |||
| PyObject* TensorWrapper::varnode() { | |||
| if (m_tensor->m_var) { | |||
| return py::cast(m_tensor->m_var).release().ptr(); | |||
| } | |||
| return nullptr; | |||
| } | |||
| void TensorWrapper::reset(PyObject* tensor) { | |||
| TensorWrapper* t = TensorWrapper::cast_safe(tensor); | |||
| if (!t) { | |||
| @@ -195,13 +351,22 @@ void TensorWrapper::reset(PyObject* tensor) { | |||
| PyObject* TensorWrapper::detach() { | |||
| PyObject* self = wrap_t::pycast(this); | |||
| PyTypeObject* pytype = self->ob_type; | |||
| auto new_tensor = std::make_shared<Tensor>(m_tensor->m_handle); | |||
| std::shared_ptr<Tensor> new_tensor; | |||
| if (m_tensor->m_handle.get()) { | |||
| new_tensor = std::make_shared<Tensor>(m_tensor->m_handle); | |||
| } else { | |||
| new_tensor = std::make_shared<Tensor>(m_tensor->m_var); | |||
| } | |||
| auto ret = TensorWrapper::make(pytype, std::move(new_tensor)); | |||
| return ret.release().ptr(); | |||
| } | |||
| PyObject* TensorWrapper::_dev_tensor(){ | |||
| if (!skip_tracing) { | |||
| set_data_read(py::cast(true).release().ptr()); | |||
| } | |||
| auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get()); | |||
| return py::cast(dev_tensor).release().ptr(); | |||
| } | |||
| @@ -227,11 +392,14 @@ PyObject* TensorWrapper::isscalar() { | |||
| } | |||
| } | |||
| void TensorWrapper::setscalar() { | |||
| m_tensor->m_flags |= Tensor::Flags::SCALAR; | |||
| } | |||
| PyMethodDef apply_def{"apply", (PyCFunction)py_apply, METH_FASTCALL, nullptr}; | |||
| struct TensorWeakRef { | |||
| std::weak_ptr<Tensor> wptr; | |||
| @@ -262,6 +430,12 @@ void init_tensor(py::module m) { | |||
| .def<&TensorWrapper::_swap_out>("_swap_out") | |||
| .def<&TensorWrapper::_swap_in>("_swap_in") | |||
| .def<&TensorWrapper::_drop>("_drop") | |||
| .def_getset<&TensorWrapper::varnode>("_varnode") | |||
| .def_getset<&TensorWrapper::data_read, &TensorWrapper::set_data_read>("data_read") | |||
| .def_getset<&TensorWrapper::value_read, &TensorWrapper::set_value_read>("value_read") | |||
| .def_getset<&TensorWrapper::shape_read, &TensorWrapper::set_shape_read>("shape_read") | |||
| .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("mixin_handle") | |||
| .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle") | |||
| .finalize(); | |||
| if (!tensor_type) throw py::error_already_set(); | |||
| py::setattr(m, "Tensor", tensor_type); | |||
| @@ -296,6 +470,25 @@ void init_tensor(py::module m) { | |||
| if (!grad_key_type) throw py::error_already_set(); | |||
| py::setattr(m, "GradKey", grad_key_type); | |||
| py::setattr(m, "backward", py::cpp_function(&GradKeyWrapper::backward)); | |||
| m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing); | |||
| m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing); | |||
| m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode); | |||
| m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode); | |||
| m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode); | |||
| m.attr("skip_tracing") = &skip_tracing; | |||
| m.attr("call_level") = &call_level; | |||
| py::class_<SharedHandle>(m, "SharedHandle") | |||
| .def(py::init<const SharedHandle&>()); | |||
| m.def("set_tracing", &set_tracing); | |||
| m.def("unset_tracing", &unset_tracing); | |||
| m.def("set_symbolic", &set_symbolic); | |||
| m.def("unset_symbolic", &unset_symbolic); | |||
| m.def("set_compiled", &set_compiled); | |||
| m.def("unset_compiled", &unset_compiled); | |||
| } | |||
| } // namespace mgb::imperative::python | |||
| @@ -30,13 +30,10 @@ struct ObjectPtr : B { | |||
| } // namespace mgb::imperative::python | |||
| #include "./grad_info.h" // for struct GradInfo | |||
| #include "./trace_info.h" // for struct TraceInfo | |||
| namespace mgb::imperative::python { | |||
| struct TraceInfo { | |||
| }; | |||
| extern std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | |||
| class SharedHandle { | |||
| @@ -46,7 +43,9 @@ class SharedHandle { | |||
| public: | |||
| inline explicit SharedHandle(Handle handle) : holder(handle, [](auto* h){ | |||
| interpreter_for_py->del(h); | |||
| if (h) { | |||
| interpreter_for_py->del(h); | |||
| } | |||
| }) {} | |||
| SharedHandle(const SharedHandle&) = default; | |||
| SharedHandle& operator=(const SharedHandle&) = default; | |||
| @@ -71,11 +70,14 @@ struct Tensor : std::enable_shared_from_this<Tensor>, NonCopyableObj { | |||
| GradInfo m_grad_info; | |||
| TraceInfo m_trace_info; | |||
| SharedHandle m_handle; | |||
| cg::VarNode* m_var; | |||
| using Handle = interpreter::Interpreter::Handle; | |||
| inline explicit Tensor(Handle handle) : m_handle(handle) {} | |||
| inline explicit Tensor(SharedHandle handle) : m_handle(std::move(handle)) {} | |||
| inline explicit Tensor(Handle handle) : m_handle(handle), m_var(nullptr) {} | |||
| inline explicit Tensor(SharedHandle handle) : m_handle(std::move(handle)), m_var(nullptr) {} | |||
| inline explicit Tensor(cg::VarNode *var) : m_handle(nullptr), m_var(var) {} | |||
| ~Tensor() = default; | |||
| inline std::shared_ptr<Tensor> copy() { | |||
| @@ -83,12 +85,28 @@ struct Tensor : std::enable_shared_from_this<Tensor>, NonCopyableObj { | |||
| ret->m_flags = m_flags; | |||
| ret->m_grad_info = m_grad_info; | |||
| ret->m_trace_info = m_trace_info; | |||
| ret->m_var = m_var; | |||
| return ret; | |||
| } | |||
| inline DType dtype() {return interpreter_for_py->get_dtype(m_handle.get());} | |||
| inline CompNode comp_node() {return interpreter_for_py->get_device(m_handle.get());} | |||
| inline TensorShape shape() {return interpreter_for_py->get_shape(m_handle.get());} | |||
| inline DType dtype() { | |||
| if (m_var) { | |||
| return m_var->dtype(); | |||
| } | |||
| return interpreter_for_py->get_dtype(m_handle.get()); | |||
| } | |||
| inline CompNode comp_node() { | |||
| if (m_var) { | |||
| return m_var->comp_node(); | |||
| } | |||
| return interpreter_for_py->get_device(m_handle.get()); | |||
| } | |||
| inline TensorShape shape() { | |||
| if (m_var) { | |||
| return m_var->shape(); | |||
| } | |||
| return interpreter_for_py->get_shape(m_handle.get()); | |||
| } | |||
| }; | |||
| @@ -135,6 +153,19 @@ struct TensorWrapper { | |||
| void _swap_in(); | |||
| void _swap_out(); | |||
| void _drop(); | |||
| PyObject* varnode(); | |||
| PyObject* handle(); | |||
| void set_handle(PyObject *); | |||
| PyObject* data_read(); | |||
| PyObject* value_read(); | |||
| PyObject* shape_read(); | |||
| PyObject* mixin_handle(); | |||
| void set_data_read(PyObject*); | |||
| void set_value_read(PyObject*); | |||
| void set_shape_read(PyObject*); | |||
| void set_mixin_handle(PyObject*); | |||
| }; | |||
| @@ -145,6 +176,7 @@ struct ApplyContext { | |||
| std::shared_ptr<OpDef> op; | |||
| Tensor*const* args; | |||
| size_t nargs; | |||
| bool backward = false; | |||
| }; | |||
| using apply_result_t = SmallVector<std::shared_ptr<Tensor>, 8>; | |||
| @@ -153,6 +185,14 @@ apply_result_t apply(ApplyContext& ctx); | |||
| void init_tensor(pybind11::module); | |||
| extern bool is_tracing; | |||
| extern bool is_symbolic; | |||
| extern bool is_compiled; | |||
| extern int64_t call_level; | |||
| extern pybind11::object cpp_apply_with_tracing, cpp_apply_compiled_mode; | |||
| extern pybind11::object cpp_apply_backward_varnode; | |||
| } // namespace mgb::imperative::python | |||
| namespace pybind11::detail { | |||
| @@ -0,0 +1,94 @@ | |||
| /** | |||
| * \file imperative/python/src/trace.cpp | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include "./trace.h" | |||
| #include "./helper.h" | |||
| #include "megbrain/imperative/ops/autogen.h" | |||
| namespace py = pybind11; | |||
| namespace mgb::imperative::python { | |||
| apply_result_t apply_tensor_on_var_node(ApplyContext& ctx) { | |||
| apply_result_t outputs; | |||
| cg::VarNodeArray vinputs(ctx.nargs); | |||
| for (size_t i = 0; i < ctx.nargs; i++) { | |||
| vinputs[i] = ctx.args[i]->m_var; | |||
| } | |||
| auto ovars = OpDef::apply_on_var_node(*ctx.op, vinputs); | |||
| for (size_t i = 0; i < ovars.size(); i++) { | |||
| outputs.emplace_back(std::make_shared<Tensor>(ovars[i])); | |||
| } | |||
| return outputs; | |||
| } | |||
| apply_result_t apply_trace(ApplyContext& ctx) { | |||
| apply_result_t outputs; | |||
| bool run_apply_on_var_node = false; | |||
| for (size_t i = 0; i < ctx.nargs; i++) { | |||
| run_apply_on_var_node |= ((ctx.args[i]->m_handle.get() == nullptr) & (ctx.args[i]->m_var != nullptr)); | |||
| } | |||
| if (ctx.backward) { | |||
| // reach here when symbolic=True or compiled=True | |||
| // call megbrain_graph.py apply(BackwardGraph, *args) | |||
| auto args = py::tuple(ctx.nargs); | |||
| for (size_t i = 0; i < ctx.nargs; i++) { | |||
| args[i] = py::cast(ctx.args[i]->m_var); | |||
| } | |||
| py::object ret = cpp_apply_backward_varnode(py::cast(ctx.op), *args); | |||
| if (!ret) { | |||
| throw py::value_error("invalid py object call"); | |||
| } | |||
| // assumption: python function always returns PyList | |||
| auto tup = py::reinterpret_borrow<py::list>(ret); | |||
| for (auto i = 0; i < tup.size(); i++) { | |||
| auto pitem = tup[i].cast<cg::VarNode *>(); | |||
| outputs.emplace_back(std::make_shared<Tensor>(pitem)); | |||
| } | |||
| return outputs; | |||
| } | |||
| if (run_apply_on_var_node && !is_symbolic) { | |||
| return apply_tensor_on_var_node(ctx); | |||
| } | |||
| py::object pyf; | |||
| if (is_compiled) { | |||
| // run apply in compiled mode, step 2, 3, etc | |||
| pyf = cpp_apply_compiled_mode; | |||
| } else { | |||
| // run first step, both symbolic and non symbolic | |||
| pyf = cpp_apply_with_tracing; | |||
| } | |||
| auto args = py::tuple(ctx.nargs); | |||
| for (size_t i = 0; i < ctx.nargs; i++) { | |||
| args[i] = TensorWrapper::make(std::move(std::shared_ptr<Tensor>(ctx.args[i]))).release(); | |||
| } | |||
| auto ret = pyf(py::cast(ctx.op), *args); | |||
| // assumption: python function always returns PyList | |||
| auto tup = py::reinterpret_borrow<py::list>(ret); | |||
| for (auto i = 0; i < tup.size(); i++) { | |||
| auto tw = TensorWrapper::cast_safe(tup[i].ptr()); | |||
| outputs.emplace_back(tw->m_tensor); | |||
| } | |||
| return outputs; | |||
| } | |||
| } // namespace mgb::imperative::python | |||
| @@ -9,9 +9,10 @@ | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include "./tensor.h" | |||
| namespace mgb::imperative::python { | |||
| struct TraceInfo { | |||
| }; | |||
| apply_result_t apply_trace(ApplyContext& ctx); | |||
| } // namespace mgb::imperative::python | |||
| @@ -0,0 +1,24 @@ | |||
| /** | |||
| * \file imperative/python/src/trace_info.h | |||
| * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
| * | |||
| * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, | |||
| * software distributed under the License is distributed on an | |||
| * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| */ | |||
| #include "inttypes.h" | |||
| namespace mgb::imperative::python { | |||
| struct TraceInfo { | |||
| int64_t mixin_handle = -1; | |||
| bool data_read = false; | |||
| bool value_read = false; | |||
| bool shape_read = false; | |||
| }; | |||
| } // namespace mgb::imperative::python | |||
| @@ -19,8 +19,6 @@ from megengine import tensor | |||
| from megengine.core._trace_option import set_symbolic_shape | |||
| from megengine.core.ops import builtin as ops | |||
| from megengine.core.ops.builtin import Elemwise | |||
| from megengine.core.tensor.core import apply | |||
| from megengine.core.tensor.raw_tensor import as_raw_tensor | |||
| from megengine.core.tensor.utils import isscalar | |||
| from megengine.functional import exp, log | |||
| from megengine.jit import exclude_from_trace, trace | |||
| @@ -32,35 +30,32 @@ def test_trace(): | |||
| @trace(symbolic=symbolic) | |||
| def f(x): | |||
| op = ops.Elemwise(Elemwise.Mode.NEGATE) | |||
| (y,) = apply(op, x) | |||
| return y | |||
| return -x | |||
| x = as_raw_tensor([1]).numpy() | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| x = tensor([1]) | |||
| y = f(x).numpy() | |||
| for i in range(3): | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| np.testing.assert_equal(f(x).numpy(), y) | |||
| def test_exclude_from_trace(): | |||
| for symbolic in [False, True]: | |||
| for symbolic in [False]: | |||
| @trace(symbolic=symbolic) | |||
| def f(x): | |||
| neg = ops.Elemwise(Elemwise.Mode.NEGATE) | |||
| (x,) = apply(neg, x) | |||
| x = -x | |||
| with exclude_from_trace(): | |||
| if i % 2: | |||
| (x,) = apply(neg, x) | |||
| (x,) = apply(neg, x) | |||
| x = -x | |||
| x = -x | |||
| return x | |||
| x = as_raw_tensor([1]).numpy() | |||
| x = tensor([1]) | |||
| for i in range(3): | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| y = f(x).numpy() | |||
| np.testing.assert_equal(f(x).numpy(), y) | |||
| def test_print_in_trace(): | |||
| @@ -69,36 +64,33 @@ def test_print_in_trace(): | |||
| @trace(symbolic=symbolic) | |||
| def f(x): | |||
| nonlocal buf | |||
| neg = ops.Elemwise(Elemwise.Mode.NEGATE) | |||
| (x,) = apply(neg, x) | |||
| x = -x | |||
| buf = x.numpy() | |||
| (x,) = apply(neg, x) | |||
| x = -x | |||
| return x | |||
| buf = None | |||
| x = as_raw_tensor([1]).numpy() | |||
| x = tensor([1]) | |||
| for i in range(3): | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| y = f(x).numpy() | |||
| z = buf | |||
| buf = None | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| np.testing.assert_equal(f(x).numpy(), y) | |||
| np.testing.assert_equal(z, buf) | |||
| def test_dump(): | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def f(a, b): | |||
| op = ops.Elemwise(Elemwise.Mode.ADD) | |||
| (y,) = apply(op, a, b) | |||
| return y | |||
| return a + b | |||
| a = as_raw_tensor([2]).numpy() | |||
| b = as_raw_tensor([4]).numpy() | |||
| y = f.__wrapped__(as_raw_tensor(a), as_raw_tensor(b)).numpy() | |||
| a = tensor([2]) | |||
| b = tensor([4]) | |||
| y = f(a, b).numpy() | |||
| for i in range(3): | |||
| np.testing.assert_equal(f(as_raw_tensor(a), as_raw_tensor(b)).numpy(), y) | |||
| np.testing.assert_equal(f(a, b).numpy(), y) | |||
| file = io.BytesIO() | |||
| dump_info = f.dump(file) | |||
| @@ -111,19 +103,17 @@ def test_dump(): | |||
| def test_capture_dump(): | |||
| a = as_raw_tensor([2]) | |||
| a = tensor([2]) | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def f(x): | |||
| op = ops.Elemwise(Elemwise.Mode.MUL) | |||
| (y,) = apply(op, x, a) | |||
| return y | |||
| return x * a | |||
| x = as_raw_tensor([3]).numpy() | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| x = tensor([3]) | |||
| y = f(x).numpy() | |||
| for i in range(3): | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| np.testing.assert_equal(f(x).numpy(), y) | |||
| file = io.BytesIO() | |||
| f.dump(file) | |||
| @@ -133,19 +123,17 @@ def test_capture_dump(): | |||
| def test_dump_volatile(): | |||
| p = as_raw_tensor([2]) | |||
| p = tensor([2]) | |||
| @trace(symbolic=True, capture_as_const=True) | |||
| def f(x): | |||
| op = ops.Elemwise(Elemwise.Mode.MUL) | |||
| (y,) = apply(op, x, p) | |||
| return y | |||
| return x * p | |||
| x = as_raw_tensor([3]).numpy() | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| x = tensor([3]) | |||
| y = f(x).numpy() | |||
| for i in range(3): | |||
| np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||
| np.testing.assert_equal(f(x).numpy(), y) | |||
| file = io.BytesIO() | |||
| f.dump(file, optimize_for_inference=False) | |||
| @@ -163,21 +151,18 @@ def test_trace_profiler(): | |||
| @trace(symbolic=symbolic, profiling=True) | |||
| def f(x): | |||
| op = ops.Elemwise(Elemwise.Mode.NEGATE) | |||
| (y,) = apply(op, x) | |||
| return y | |||
| return -x | |||
| x = as_raw_tensor([1]).numpy() | |||
| y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||
| x = tensor([1]) | |||
| y = f(x).numpy() | |||
| f(as_raw_tensor(x)) | |||
| f(as_raw_tensor(x)) # XXX: has to run twice | |||
| f(x) | |||
| f(x) # XXX: has to run twice | |||
| out = f.get_profile() | |||
| assert out.get("profiler") | |||
| @pytest.mark.skip(reason="force opt_level=0 when building graph") | |||
| def test_goptions(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x): | |||
| @@ -196,7 +181,6 @@ def test_goptions(): | |||
| np.testing.assert_equal(g(d).numpy().item(), 1.0) | |||
| @pytest.mark.skip(reason="force opt_level=0 when building graph") | |||
| def test_goptions_log_sum_exp(): | |||
| @trace(symbolic=True, opt_level=0, capture_as_const=True) | |||
| def f(x, y): | |||
| @@ -256,8 +240,7 @@ def test_optimize_for_inference_broadcast(): | |||
| @trace(capture_as_const=True, symbolic_shape=True) | |||
| def f(): | |||
| (b,) = apply(ops.Broadcast(), a, tensor([1, 10], dtype=np.int32)) | |||
| return b | |||
| return a._broadcast(tensor([1, 10], dtype=np.int32)) | |||
| f() | |||
| f.dump(io.BytesIO()) | |||
| @@ -387,7 +370,9 @@ def test_trace_nms(): | |||
| @trace(symbolic=False) | |||
| def f(boxes, scores): | |||
| # with tracing, max_output must be specified | |||
| results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | |||
| # without tracing, max output can be inferred inside nms | |||
| with exclude_from_trace(): | |||
| _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) | |||
| return results | |||
| @@ -318,7 +318,6 @@ def optimize_for_inference(args, outputs): | |||
| ), "optimize_for_inference should be set when {} is given".format(k) | |||
| kwargs[v] = True | |||
| outputs = [G.VarNode(output) for output in outputs] | |||
| if args.optimize_for_inference: | |||
| outputs = [i._node for i in G.optimize_for_inference(outputs, **kwargs)] | |||
| @@ -84,7 +84,7 @@ def main(): | |||
| minibatch = next(val_dataset) | |||
| net.eval() | |||
| _, loss = val_fun(data, label) | |||
| loss = loss.numpy()[0] | |||
| loss = loss.numpy() | |||
| val_loss.append((step, loss)) | |||
| print("Step: {} loss={}".format(step, loss)) | |||
| opt.step() | |||