| @@ -8,8 +8,6 @@ namespace Tensorflow | |||
| { | |||
| static void Main(string[] args) | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| var diag = new Diagnostician(); | |||
| // diag.Diagnose(@"D:\memory.txt"); | |||
| @@ -19,6 +19,8 @@ namespace Tensorflow | |||
| public TensorSpec[] structure { get; set; } | |||
| public int FirstInputTensorCount { get; set; } = 1; | |||
| public Shape[] output_shapes => structure.Select(x => x.shape).ToArray(); | |||
| public TF_DataType[] output_types => structure.Select(x => x.dtype).ToArray(); | |||
| @@ -131,6 +133,7 @@ namespace Tensorflow | |||
| // (4) Apply stats aggregator options | |||
| dataset.FirstInputTensorCount = this.FirstInputTensorCount; | |||
| return dataset; | |||
| } | |||
| @@ -142,7 +145,7 @@ namespace Tensorflow | |||
| $"types: {string.Join(", ", structure.Select(x => "tf." + x.dtype.as_numpy_name()))}, " + | |||
| $"len: {length}"; | |||
| public IEnumerator<(Tensor, Tensor)> GetEnumerator() | |||
| public IEnumerator<(Tensors, Tensors)> GetEnumerator() | |||
| { | |||
| using var ownedIterator = new OwnedIterator(this); | |||
| @@ -158,7 +161,8 @@ namespace Tensorflow | |||
| break; | |||
| } | |||
| yield return (results[0], results.Length == 1 ? null : results[1]); | |||
| yield return (new Tensors(results.Take(FirstInputTensorCount)), results.Length == FirstInputTensorCount ? | |||
| null : new Tensors(results.Skip(FirstInputTensorCount))); | |||
| } | |||
| } | |||
| @@ -4,7 +4,7 @@ using Tensorflow.Framework.Models; | |||
| namespace Tensorflow | |||
| { | |||
| public interface IDatasetV2 : IEnumerable<(Tensor, Tensor)> | |||
| public interface IDatasetV2 : IEnumerable<(Tensors, Tensors)> | |||
| { | |||
| string[] class_names { get; set; } | |||
| @@ -18,6 +18,8 @@ namespace Tensorflow | |||
| TensorSpec[] structure { get; set; } | |||
| int FirstInputTensorCount { get; set; } | |||
| /// <summary> | |||
| /// Caches the elements in this dataset. | |||
| /// </summary> | |||
| @@ -27,7 +27,8 @@ namespace Tensorflow | |||
| _dataset = dataset; | |||
| _element_spec = dataset.element_spec; | |||
| // _flat_output_types = | |||
| (_iterator_resource, _deleter) = ops.anonymous_iterator_v2(_dataset.output_types, _dataset.output_shapes); | |||
| _iterator_resource = ops.anonymous_iterator_v3(_dataset.output_types, _dataset.output_shapes); | |||
| // TODO(Rinne): deal with graph mode. | |||
| ops.make_iterator(dataset.variant_tensor, _iterator_resource); | |||
| } | |||
| @@ -48,7 +49,7 @@ namespace Tensorflow | |||
| public void Dispose() | |||
| { | |||
| tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); | |||
| //tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); | |||
| } | |||
| } | |||
| } | |||
| @@ -5,8 +5,8 @@ namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class DataAdapterArgs: IKerasConfig | |||
| { | |||
| public Tensor X { get; set; } | |||
| public Tensor Y { get; set; } | |||
| public Tensors X { get; set; } | |||
| public Tensors Y { get; set; } | |||
| public IDatasetV2 Dataset { get; set; } | |||
| public int BatchSize { get; set; } = 32; | |||
| public int Steps { get; set; } | |||
| @@ -5,8 +5,8 @@ namespace Tensorflow.Keras.ArgsDefinition | |||
| { | |||
| public class DataHandlerArgs: IKerasConfig | |||
| { | |||
| public Tensor X { get; set; } | |||
| public Tensor Y { get; set; } | |||
| public Tensors X { get; set; } | |||
| public Tensors Y { get; set; } | |||
| public IDatasetV2 Dataset { get; set; } | |||
| public int BatchSize { get; set; } = 32; | |||
| public int StepsPerEpoch { get; set; } = -1; | |||
| @@ -24,6 +24,17 @@ public interface IModel : ILayer | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| ICallback fit(IEnumerable<NDArray> x, NDArray y, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| float validation_split = 0f, | |||
| bool shuffle = true, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false); | |||
| void save(string filepath, | |||
| bool overwrite = true, | |||
| bool include_optimizer = true, | |||
| @@ -1,19 +1,24 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System.Threading; | |||
| using Tensorflow.Framework.Models; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Layers; | |||
| using Tensorflow.Keras.Losses; | |||
| using Tensorflow.Keras.Metrics; | |||
| using Tensorflow.Keras.Models; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public interface IKerasApi | |||
| { | |||
| public ILayersApi layers { get; } | |||
| public ILossesApi losses { get; } | |||
| public IMetricsApi metrics { get; } | |||
| public IInitializersApi initializers { get; } | |||
| IInitializersApi initializers { get; } | |||
| ILayersApi layers { get; } | |||
| ILossesApi losses { get; } | |||
| IOptimizerApi optimizers { get; } | |||
| IMetricsApi metrics { get; } | |||
| IModelsApi models { get; } | |||
| /// <summary> | |||
| /// `Model` groups layers into an object with training and inference features. | |||
| @@ -21,6 +26,35 @@ namespace Tensorflow.Keras | |||
| /// <param name="input"></param> | |||
| /// <param name="output"></param> | |||
| /// <returns></returns> | |||
| public IModel Model(Tensors inputs, Tensors outputs, string name = null); | |||
| IModel Model(Tensors inputs, Tensors outputs, string name = null); | |||
| /// <summary> | |||
| /// Instantiate a Keras tensor. | |||
| /// </summary> | |||
| /// <param name="shape"></param> | |||
| /// <param name="batch_size"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="sparse"> | |||
| /// A boolean specifying whether the placeholder to be created is sparse. | |||
| /// </param> | |||
| /// <param name="ragged"> | |||
| /// A boolean specifying whether the placeholder to be created is ragged. | |||
| /// </param> | |||
| /// <param name="tensor"> | |||
| /// Optional existing tensor to wrap into the `Input` layer. | |||
| /// If set, the layer will not create a placeholder tensor. | |||
| /// </param> | |||
| /// <returns></returns> | |||
| Tensors Input(Shape shape = null, | |||
| int batch_size = -1, | |||
| string name = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| bool sparse = false, | |||
| Tensor tensor = null, | |||
| bool ragged = false, | |||
| TypeSpec type_spec = null, | |||
| Shape batch_input_shape = null, | |||
| Shape batch_shape = null); | |||
| } | |||
| } | |||
| @@ -0,0 +1,47 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public interface IOptimizerApi | |||
| { | |||
| /// <summary> | |||
| /// Adam optimization is a stochastic gradient descent method that is based on | |||
| /// adaptive estimation of first-order and second-order moments. | |||
| /// </summary> | |||
| /// <param name="learning_rate"></param> | |||
| /// <param name="beta_1"></param> | |||
| /// <param name="beta_2"></param> | |||
| /// <param name="epsilon"></param> | |||
| /// <param name="amsgrad"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| IOptimizer Adam(float learning_rate = 0.001f, | |||
| float beta_1 = 0.9f, | |||
| float beta_2 = 0.999f, | |||
| float epsilon = 1e-7f, | |||
| bool amsgrad = false, | |||
| string name = "Adam"); | |||
| /// <summary> | |||
| /// Construct a new RMSprop optimizer. | |||
| /// </summary> | |||
| /// <param name="learning_rate"></param> | |||
| /// <param name="rho"></param> | |||
| /// <param name="momentum"></param> | |||
| /// <param name="epsilon"></param> | |||
| /// <param name="centered"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| IOptimizer RMSprop(float learning_rate = 0.001f, | |||
| float rho = 0.9f, | |||
| float momentum = 0.0f, | |||
| float epsilon = 1e-7f, | |||
| bool centered = false, | |||
| string name = "RMSprop"); | |||
| IOptimizer SGD(float learning_rate); | |||
| } | |||
| } | |||
| @@ -0,0 +1,12 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Models | |||
| { | |||
| public interface IModelsApi | |||
| { | |||
| public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null); | |||
| } | |||
| } | |||
| @@ -14,7 +14,76 @@ namespace Tensorflow.NumPy | |||
| red = data[2]; | |||
| } | |||
| public static implicit operator NDArray(Array array) | |||
| public static implicit operator NDArray(int[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(int[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(int[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(byte[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(float[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(double[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(long[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(bool[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(uint[,,] array) | |||
| => new NDArray(array); | |||
| public static implicit operator NDArray(ulong[,,] array) | |||
| => new NDArray(array); | |||
| public unsafe static implicit operator bool(NDArray nd) | |||
| @@ -25,7 +25,7 @@ public class NpzDictionary | |||
| return array; | |||
| using var s = entry.Open(); | |||
| return LoadMatrix(s); | |||
| return (NDArray)LoadMatrix(s); | |||
| } | |||
| public Array LoadMatrix(Stream stream) | |||
| @@ -49,5 +49,8 @@ namespace Tensorflow.NumPy | |||
| IEnumerator IEnumerable.GetEnumerator() | |||
| => GetEnumerator(); | |||
| public static explicit operator NDArray(Array array) | |||
| => new NDArray(array); | |||
| } | |||
| } | |||
| @@ -1,6 +1,9 @@ | |||
| using System; | |||
| using Tensorflow.Contexts; | |||
| using Tensorflow.Eager; | |||
| using Tensorflow.Framework.Models; | |||
| using Tensorflow.Functions; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Binding; | |||
| namespace Tensorflow | |||
| @@ -220,6 +223,37 @@ namespace Tensorflow | |||
| return (results[0], results[1]); | |||
| } | |||
| public Tensor anonymous_iterator_v3(TF_DataType[] output_types, Shape[] output_shapes, string name = null) | |||
| { | |||
| var ctx = tf.Context; | |||
| Dictionary<string, object> attrs = new(); | |||
| attrs["output_types"] = output_types; | |||
| attrs["output_shapes"] = output_shapes; | |||
| if (ctx.executing_eagerly()) | |||
| { | |||
| try | |||
| { | |||
| var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AnonymousIteratorV3", name) | |||
| { | |||
| attrs = attrs | |||
| }); | |||
| return result[0]; | |||
| } | |||
| catch (Exception) | |||
| { | |||
| return anonymous_iterator_v3_eager_fallback(output_types, output_shapes, name, ctx); | |||
| } | |||
| } | |||
| return tf.OpDefLib._apply_op_helper("AnonymousIteratorV3", name, attrs).outputs[0]; | |||
| } | |||
| public Tensor anonymous_iterator_v3_eager_fallback(TF_DataType[] output_types, Shape[] output_shapes, string name, Context ctx) | |||
| { | |||
| object[] attrs = new object[] { output_types, output_shapes }; | |||
| var result = execute.quick_execute("AnonymousIteratorV3", 1, new Tensor[] { }, attrs, ctx, name); | |||
| return result[0]; | |||
| } | |||
| /// <summary> | |||
| /// Makes a new iterator from the given `dataset` and stores it in `iterator`. | |||
| /// </summary> | |||
| @@ -65,6 +65,93 @@ namespace Tensorflow | |||
| IEnumerator IEnumerable.GetEnumerator() | |||
| => GetEnumerator(); | |||
| public NDArray numpy() | |||
| { | |||
| EnsureSingleTensor(this, "nnumpy"); | |||
| return this[0].numpy(); | |||
| } | |||
| public T[] ToArray<T>() where T: unmanaged | |||
| { | |||
| EnsureSingleTensor(this, $"ToArray<{typeof(T)}>"); | |||
| return this[0].ToArray<T>(); | |||
| } | |||
| #region Explicit Conversions | |||
| public unsafe static explicit operator bool(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to bool"); | |||
| return (bool)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator sbyte(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to sbyte"); | |||
| return (sbyte)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator byte(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to byte"); | |||
| return (byte)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator ushort(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to ushort"); | |||
| return (ushort)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator short(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to short"); | |||
| return (short)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator int(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to int"); | |||
| return (int)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator uint(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to uint"); | |||
| return (uint)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator long(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to long"); | |||
| return (long)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator ulong(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to ulong"); | |||
| return (ulong)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator float(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to byte"); | |||
| return (byte)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator double(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to double"); | |||
| return (double)tensor[0]; | |||
| } | |||
| public unsafe static explicit operator string(Tensors tensor) | |||
| { | |||
| EnsureSingleTensor(tensor, "explicit conversion to string"); | |||
| return (string)tensor[0]; | |||
| } | |||
| #endregion | |||
| #region Implicit Conversions | |||
| public static implicit operator Tensors(Tensor tensor) | |||
| => new Tensors(tensor); | |||
| @@ -87,12 +174,26 @@ namespace Tensorflow | |||
| public static implicit operator Tensor[](Tensors tensors) | |||
| => tensors.items.ToArray(); | |||
| #endregion | |||
| public void Deconstruct(out Tensor a, out Tensor b) | |||
| { | |||
| a = items[0]; | |||
| b = items[1]; | |||
| } | |||
| private static void EnsureSingleTensor(Tensors tensors, string methodnName) | |||
| { | |||
| if(tensors.Length == 0) | |||
| { | |||
| throw new ValueError($"Method `{methodnName}` of `Tensors` cannot be used when `Tensors` contains no Tensor."); | |||
| } | |||
| else if(tensors.Length > 1) | |||
| { | |||
| throw new ValueError($"Method `{methodnName}` of `Tensors` cannot be used when `Tensors` contains more than one Tensor."); | |||
| } | |||
| } | |||
| public override string ToString() | |||
| => items.Count() == 1 | |||
| ? items.First().ToString() | |||
| @@ -65,14 +65,6 @@ namespace Tensorflow | |||
| InitGradientEnvironment(); | |||
| } | |||
| public void UseKeras<T>() where T : IKerasApi, new() | |||
| { | |||
| if (keras == null) | |||
| { | |||
| keras = new T(); | |||
| } | |||
| } | |||
| public string VERSION => c_api.StringPiece(c_api.TF_Version()); | |||
| private void InitGradientEnvironment() | |||
| @@ -10,7 +10,7 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| protected DataAdapterArgs args; | |||
| protected IDatasetV2 dataset; | |||
| public virtual bool CanHandle(Tensor x, Tensor y = null) | |||
| public virtual bool CanHandle(Tensors x, Tensors y = null) | |||
| => throw new NotImplementedException(); | |||
| public virtual IDatasetV2 GetDataset() | |||
| @@ -19,12 +19,18 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| public virtual int GetSize() | |||
| => throw new NotImplementedException(""); | |||
| public virtual (Tensor, Tensor) Expand1d(Tensor x, Tensor y) | |||
| public virtual (Tensors, Tensors) Expand1d(Tensors x, Tensors y) | |||
| { | |||
| if (x.shape.ndim == 1) | |||
| x = array_ops.expand_dims(x, axis: -1); | |||
| if (y.shape.ndim == 1) | |||
| y = array_ops.expand_dims(y, axis: -1); | |||
| for(int i = 0; i < x.Length; i++) | |||
| { | |||
| if (x[i].shape.ndim == 1) | |||
| x[i] = array_ops.expand_dims(x[i], axis: -1); | |||
| } | |||
| for (int i = 0; i < y.Length; i++) | |||
| { | |||
| if (y[i].shape.ndim == 1) | |||
| y[i] = array_ops.expand_dims(y[i], axis: -1); | |||
| } | |||
| return (x, y); | |||
| } | |||
| @@ -93,11 +93,15 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| public IEnumerable<(int, OwnedIterator)> enumerate_epochs() | |||
| { | |||
| var data_iterator = new OwnedIterator(_dataset); | |||
| foreach (var epoch in range(_initial_epoch, _epochs)) | |||
| { | |||
| if (_insufficient_data) | |||
| break; | |||
| using var data_iterator = new OwnedIterator(_dataset); | |||
| if (_adapter.ShouldRecreateIterator()) | |||
| { | |||
| data_iterator = new OwnedIterator(_dataset); | |||
| } | |||
| yield return (epoch, data_iterator); | |||
| } | |||
| // _adapter.on_epoch_end() | |||
| @@ -13,10 +13,10 @@ | |||
| /// <param name="x">input features</param> | |||
| /// <param name="y">target labels</param> | |||
| /// <returns></returns> | |||
| bool CanHandle(Tensor x, Tensor y = null); | |||
| bool CanHandle(Tensors x, Tensors y = null); | |||
| IDatasetV2 GetDataset(); | |||
| int GetSize(); | |||
| (Tensor, Tensor) Expand1d(Tensor x, Tensor y); | |||
| (Tensors, Tensors) Expand1d(Tensors x, Tensors y); | |||
| bool ShouldRecreateIterator(); | |||
| } | |||
| } | |||
| @@ -1,4 +1,5 @@ | |||
| using System; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using static Tensorflow.Binding; | |||
| @@ -33,10 +34,11 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| indices_dataset = indices_dataset.flat_map(slice_batch_indices); | |||
| var inputs = new Tensors(); | |||
| if (args.X != null) | |||
| inputs.Add(args.X); | |||
| inputs.AddRange(args.X); | |||
| if (args.Y != null) | |||
| inputs.Add(args.Y); | |||
| inputs.AddRange(args.Y); | |||
| dataset = slice_inputs(indices_dataset, inputs); | |||
| dataset.FirstInputTensorCount = args.X.Length; | |||
| } | |||
| Tensors permutation(Tensors tensor) | |||
| @@ -87,8 +89,9 @@ namespace Tensorflow.Keras.Engine.DataAdapters | |||
| return dataset.with_options(new DatasetOptions { }); | |||
| } | |||
| public override int GetSize() | |||
| => _size; | |||
| public override int GetSize() => _size; | |||
| public override bool ShouldRecreateIterator() => false; | |||
| void _process_tensorlike() | |||
| { | |||
| @@ -59,7 +59,62 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| return FitInternal(data_handler, epochs, verbose); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_function); | |||
| } | |||
| public ICallback fit(IEnumerable<NDArray> x, NDArray y, | |||
| int batch_size = -1, | |||
| int epochs = 1, | |||
| int verbose = 1, | |||
| float validation_split = 0f, | |||
| bool shuffle = true, | |||
| int initial_epoch = 0, | |||
| int max_queue_size = 10, | |||
| int workers = 1, | |||
| bool use_multiprocessing = false) | |||
| { | |||
| foreach(var tx in x) | |||
| { | |||
| if (tx.dims[0] != y.dims[0]) | |||
| { | |||
| throw new InvalidArgumentError( | |||
| $"The array x and y should have same value at dim 0, but got {tx.dims[0]} and {y.dims[0]}"); | |||
| } | |||
| } | |||
| int train_count = Convert.ToInt32(y.dims[0] * (1 - validation_split)); | |||
| var train_x = x.Select(x => x[new Slice(0, train_count)] as Tensor); | |||
| var train_y = y[new Slice(0, train_count)]; | |||
| var val_x = x.Select(x => x[new Slice(train_count)] as Tensor); | |||
| var val_y = y[new Slice(train_count)]; | |||
| var data_handler = new DataHandler(new DataHandlerArgs | |||
| { | |||
| X = new Tensors(train_x), | |||
| Y = train_y, | |||
| BatchSize = batch_size, | |||
| InitialEpoch = initial_epoch, | |||
| Epochs = epochs, | |||
| Shuffle = shuffle, | |||
| MaxQueueSize = max_queue_size, | |||
| Workers = workers, | |||
| UseMultiprocessing = use_multiprocessing, | |||
| Model = this, | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || | |||
| data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) | |||
| { | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_multi_inputs_function); | |||
| } | |||
| else | |||
| { | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: null, | |||
| train_step_func: train_step_function); | |||
| } | |||
| } | |||
| public History fit(IDatasetV2 dataset, | |||
| @@ -88,10 +143,12 @@ namespace Tensorflow.Keras.Engine | |||
| StepsPerExecution = _steps_per_execution | |||
| }); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: validation_data); | |||
| return FitInternal(data_handler, epochs, verbose, validation_data: validation_data, | |||
| train_step_func: train_step_function); | |||
| } | |||
| History FitInternal(DataHandler data_handler, int epochs, int verbose, IDatasetV2 validation_data = null) | |||
| History FitInternal(DataHandler data_handler, int epochs, int verbose, IDatasetV2 validation_data, | |||
| Func<DataHandler, OwnedIterator, Dictionary<string, float>> train_step_func) | |||
| { | |||
| stop_training = false; | |||
| _train_counter.assign(0); | |||
| @@ -113,7 +170,7 @@ namespace Tensorflow.Keras.Engine | |||
| foreach (var step in data_handler.steps()) | |||
| { | |||
| callbacks.on_train_batch_begin(step); | |||
| logs = train_step_function(data_handler, iterator); | |||
| logs = train_step_func(data_handler, iterator); | |||
| var end_step = step + data_handler.StepIncrement; | |||
| callbacks.on_train_batch_end(end_step, logs); | |||
| } | |||
| @@ -17,12 +17,21 @@ namespace Tensorflow.Keras.Engine | |||
| return outputs; | |||
| } | |||
| Dictionary<string, float> train_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator) | |||
| { | |||
| var data = iterator.next(); | |||
| var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; | |||
| var outputs = train_step(data_handler, new Tensors(data.Take(x_size)), new Tensors(data.Skip(x_size))); | |||
| tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); | |||
| return outputs; | |||
| } | |||
| /// <summary> | |||
| /// The logic for one training step. | |||
| /// </summary> | |||
| /// <param name="data"></param> | |||
| /// <returns></returns> | |||
| Dictionary<string, float> train_step(DataHandler data_handler, Tensor x, Tensor y) | |||
| Dictionary<string, float> train_step(DataHandler data_handler, Tensors x, Tensors y) | |||
| { | |||
| (x, y) = data_handler.DataAdapter.Expand1d(x, y); | |||
| using var tape = tf.GradientTape(); | |||
| @@ -7,6 +7,6 @@ namespace Tensorflow | |||
| /// </summary> | |||
| public static class KerasApi | |||
| { | |||
| public static KerasInterface keras { get; } = new KerasInterface(); | |||
| public static KerasInterface keras { get; } = KerasInterface.Instance; | |||
| } | |||
| } | |||
| @@ -18,6 +18,28 @@ namespace Tensorflow.Keras | |||
| { | |||
| public class KerasInterface : IKerasApi | |||
| { | |||
| private static KerasInterface _instance = null; | |||
| private static readonly object _lock = new object(); | |||
| private KerasInterface() | |||
| { | |||
| Tensorflow.Binding.tf.keras = this; | |||
| } | |||
| public static KerasInterface Instance | |||
| { | |||
| get | |||
| { | |||
| lock (_lock) | |||
| { | |||
| if (_instance is null) | |||
| { | |||
| _instance = new KerasInterface(); | |||
| } | |||
| return _instance; | |||
| } | |||
| } | |||
| } | |||
| public KerasDataset datasets { get; } = new KerasDataset(); | |||
| public IInitializersApi initializers { get; } = new InitializersApi(); | |||
| public Regularizers regularizers { get; } = new Regularizers(); | |||
| @@ -27,9 +49,9 @@ namespace Tensorflow.Keras | |||
| public Preprocessing preprocessing { get; } = new Preprocessing(); | |||
| ThreadLocal<BackendImpl> _backend = new ThreadLocal<BackendImpl>(() => new BackendImpl()); | |||
| public BackendImpl backend => _backend.Value; | |||
| public OptimizerApi optimizers { get; } = new OptimizerApi(); | |||
| public IOptimizerApi optimizers { get; } = new OptimizerApi(); | |||
| public IMetricsApi metrics { get; } = new MetricsApi(); | |||
| public ModelsApi models { get; } = new ModelsApi(); | |||
| public IModelsApi models { get; } = new ModelsApi(); | |||
| public KerasUtils utils { get; } = new KerasUtils(); | |||
| public Sequential Sequential(List<ILayer> layers = null, | |||
| @@ -9,12 +9,12 @@ using ThirdParty.Tensorflow.Python.Keras.Protobuf; | |||
| namespace Tensorflow.Keras.Models | |||
| { | |||
| public class ModelsApi | |||
| public class ModelsApi: IModelsApi | |||
| { | |||
| public Functional from_config(ModelConfig config) | |||
| => Functional.from_config(config); | |||
| public Model load_model(string filepath, bool compile = true, LoadOptions? options = null) | |||
| public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null) | |||
| { | |||
| return KerasLoadModelUtils.load_model(filepath, compile: compile, options: options) as Model; | |||
| } | |||
| @@ -1,8 +1,9 @@ | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Optimizers | |||
| { | |||
| public class OptimizerApi | |||
| public class OptimizerApi: IOptimizerApi | |||
| { | |||
| /// <summary> | |||
| /// Adam optimization is a stochastic gradient descent method that is based on | |||
| @@ -15,7 +16,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| /// <param name="amsgrad"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public OptimizerV2 Adam(float learning_rate = 0.001f, | |||
| public IOptimizer Adam(float learning_rate = 0.001f, | |||
| float beta_1 = 0.9f, | |||
| float beta_2 = 0.999f, | |||
| float epsilon = 1e-7f, | |||
| @@ -38,7 +39,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| /// <param name="centered"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public OptimizerV2 RMSprop(float learning_rate = 0.001f, | |||
| public IOptimizer RMSprop(float learning_rate = 0.001f, | |||
| float rho = 0.9f, | |||
| float momentum = 0.0f, | |||
| float epsilon = 1e-7f, | |||
| @@ -54,7 +55,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| Name = name | |||
| }); | |||
| public SGD SGD(float learning_rate) | |||
| public IOptimizer SGD(float learning_rate) | |||
| => new SGD(learning_rate); | |||
| } | |||
| } | |||
| @@ -10,8 +10,6 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| [TestInitialize] | |||
| public void TestInit() | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| if (!tf.executing_eagerly()) | |||
| tf.enable_eager_execution(); | |||
| tf.Context.ensure_initialized(); | |||
| @@ -9,7 +9,7 @@ using Tensorflow.NumPy; | |||
| namespace TensorFlowNET.Keras.UnitTest; | |||
| [TestClass] | |||
| public class GradientTest | |||
| public class GradientTest : EagerModeTestBase | |||
| { | |||
| public IModel get_actor(int num_states) | |||
| { | |||
| @@ -0,0 +1,30 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Diagnostics; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using System.Threading.Tasks; | |||
| using Tensorflow.NumPy; | |||
| namespace Tensorflow.Keras.UnitTest.Helpers | |||
| { | |||
| public class RandomDataSet : DataSetBase | |||
| { | |||
| private Shape _shape; | |||
| public RandomDataSet(Shape shape, int count) | |||
| { | |||
| _shape = shape; | |||
| Debug.Assert(_shape.ndim == 3); | |||
| long[] dims = new long[4]; | |||
| dims[0] = count; | |||
| for (int i = 1; i < 4; i++) | |||
| { | |||
| dims[i] = _shape[i - 1]; | |||
| } | |||
| Shape s = new Shape(dims); | |||
| Data = np.random.normal(0, 2, s); | |||
| Labels = np.random.uniform(0, 1, (count, 1)); | |||
| } | |||
| } | |||
| } | |||
| @@ -150,7 +150,6 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| [TestMethod, Ignore("WIP")] | |||
| public void SimpleRNN() | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
| /*var simple_rnn = keras.layers.SimpleRNN(4); | |||
| var output = simple_rnn.Apply(inputs); | |||
| @@ -3,6 +3,7 @@ using Tensorflow.Keras.Engine; | |||
| using System.Diagnostics; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Keras.Models; | |||
| namespace TensorFlowNET.Keras.UnitTest | |||
| { | |||
| @@ -18,7 +19,7 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| var model = GetFunctionalModel(); | |||
| var config = model.get_config(); | |||
| Debug.Assert(config is ModelConfig); | |||
| var new_model = keras.models.from_config(config as ModelConfig); | |||
| var new_model = new ModelsApi().from_config(config as ModelConfig); | |||
| Assert.AreEqual(model.Layers.Count, new_model.Layers.Count); | |||
| } | |||
| @@ -0,0 +1,69 @@ | |||
| using Microsoft.VisualStudio.TestPlatform.Utilities; | |||
| using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| using System.Threading.Tasks; | |||
| using System.Xml.Linq; | |||
| using Tensorflow.Operations; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.NumPy; | |||
| using Microsoft.VisualBasic; | |||
| using static HDF.PInvoke.H5T; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using Tensorflow.Keras.Optimizers; | |||
| namespace Tensorflow.Keras.UnitTest | |||
| { | |||
| [TestClass] | |||
| public class MultiInputModelTest | |||
| { | |||
| [TestMethod] | |||
| public void SimpleModel() | |||
| { | |||
| var inputs = keras.Input((28, 28, 1)); | |||
| var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs); | |||
| var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1); | |||
| var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1); | |||
| var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2); | |||
| var flat1 = keras.layers.Flatten().Apply(pool2); | |||
| var inputs_2 = keras.Input((28, 28, 1)); | |||
| var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2); | |||
| var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2); | |||
| var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2); | |||
| var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2); | |||
| var flat1_2 = keras.layers.Flatten().Apply(pool2_2); | |||
| var concat = keras.layers.Concatenate().Apply((flat1, flat1_2)); | |||
| var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat); | |||
| var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1); | |||
| var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2); | |||
| var output = keras.layers.Softmax(-1).Apply(dense3); | |||
| var model = keras.Model((inputs, inputs_2), output); | |||
| model.summary(); | |||
| var data_loader = new MnistModelLoader(); | |||
| var dataset = data_loader.LoadAsync(new ModelLoadSetting | |||
| { | |||
| TrainDir = "mnist", | |||
| OneHot = false, | |||
| ValidationSize = 59000, | |||
| }).Result; | |||
| var loss = keras.losses.SparseCategoricalCrossentropy(); | |||
| var optimizer = new Adam(0.001f); | |||
| model.compile(optimizer, loss, new string[] { "accuracy" }); | |||
| NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); | |||
| NDArray x2 = x1; | |||
| var x = new NDArray[] { x1, x2 }; | |||
| model.fit(x, dataset.Train.Labels, batch_size: 8, epochs: 3); | |||
| } | |||
| } | |||
| } | |||
| @@ -13,6 +13,7 @@ using Tensorflow; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.NumPy; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using static TensorFlowNET.Keras.UnitTest.SaveModel.SequentialModelSave; | |||
| namespace TensorFlowNET.Keras.UnitTest.SaveModel; | |||
| @@ -6,7 +6,7 @@ using Tensorflow.Keras; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Losses; | |||
| using Tensorflow.Keras.Optimizers; | |||
| using Tensorflow.NumPy; | |||
| using Tensorflow.Keras.UnitTest.Helpers; | |||
| using static Tensorflow.Binding; | |||
| using static Tensorflow.KerasApi; | |||
| @@ -175,24 +175,4 @@ public class SequentialModelSave | |||
| // ) | |||
| #endregion | |||
| } | |||
| public class RandomDataSet : DataSetBase | |||
| { | |||
| private Shape _shape; | |||
| public RandomDataSet(Shape shape, int count) | |||
| { | |||
| _shape = shape; | |||
| Debug.Assert(_shape.ndim == 3); | |||
| long[] dims = new long[4]; | |||
| dims[0] = count; | |||
| for (int i = 1; i < 4; i++) | |||
| { | |||
| dims[i] = _shape[i - 1]; | |||
| } | |||
| Shape s = new Shape(dims); | |||
| Data = np.random.normal(0, 2, s); | |||
| Labels = np.random.uniform(0, 1, (count, 1)); | |||
| } | |||
| } | |||
| } | |||