| @@ -8,8 +8,6 @@ namespace Tensorflow | |||
| { | |||
| static void Main(string[] args) | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| var diag = new Diagnostician(); | |||
| // diag.Diagnose(@"D:\memory.txt"); | |||
| @@ -1,19 +1,24 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using System.Threading; | |||
| using Tensorflow.Framework.Models; | |||
| using Tensorflow.Keras.Engine; | |||
| using Tensorflow.Keras.Layers; | |||
| using Tensorflow.Keras.Losses; | |||
| using Tensorflow.Keras.Metrics; | |||
| using Tensorflow.Keras.Models; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public interface IKerasApi | |||
| { | |||
| public ILayersApi layers { get; } | |||
| public ILossesApi losses { get; } | |||
| public IMetricsApi metrics { get; } | |||
| public IInitializersApi initializers { get; } | |||
| IInitializersApi initializers { get; } | |||
| ILayersApi layers { get; } | |||
| ILossesApi losses { get; } | |||
| IOptimizerApi optimizers { get; } | |||
| IMetricsApi metrics { get; } | |||
| IModelsApi models { get; } | |||
| /// <summary> | |||
| /// `Model` groups layers into an object with training and inference features. | |||
| @@ -21,6 +26,35 @@ namespace Tensorflow.Keras | |||
| /// <param name="input"></param> | |||
| /// <param name="output"></param> | |||
| /// <returns></returns> | |||
| public IModel Model(Tensors inputs, Tensors outputs, string name = null); | |||
| IModel Model(Tensors inputs, Tensors outputs, string name = null); | |||
| /// <summary> | |||
| /// Instantiate a Keras tensor. | |||
| /// </summary> | |||
| /// <param name="shape"></param> | |||
| /// <param name="batch_size"></param> | |||
| /// <param name="dtype"></param> | |||
| /// <param name="name"></param> | |||
| /// <param name="sparse"> | |||
| /// A boolean specifying whether the placeholder to be created is sparse. | |||
| /// </param> | |||
| /// <param name="ragged"> | |||
| /// A boolean specifying whether the placeholder to be created is ragged. | |||
| /// </param> | |||
| /// <param name="tensor"> | |||
| /// Optional existing tensor to wrap into the `Input` layer. | |||
| /// If set, the layer will not create a placeholder tensor. | |||
| /// </param> | |||
| /// <returns></returns> | |||
| Tensors Input(Shape shape = null, | |||
| int batch_size = -1, | |||
| string name = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| bool sparse = false, | |||
| Tensor tensor = null, | |||
| bool ragged = false, | |||
| TypeSpec type_spec = null, | |||
| Shape batch_input_shape = null, | |||
| Shape batch_shape = null); | |||
| } | |||
| } | |||
| @@ -0,0 +1,47 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras | |||
| { | |||
| public interface IOptimizerApi | |||
| { | |||
| /// <summary> | |||
| /// Adam optimization is a stochastic gradient descent method that is based on | |||
| /// adaptive estimation of first-order and second-order moments. | |||
| /// </summary> | |||
| /// <param name="learning_rate"></param> | |||
| /// <param name="beta_1"></param> | |||
| /// <param name="beta_2"></param> | |||
| /// <param name="epsilon"></param> | |||
| /// <param name="amsgrad"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| IOptimizer Adam(float learning_rate = 0.001f, | |||
| float beta_1 = 0.9f, | |||
| float beta_2 = 0.999f, | |||
| float epsilon = 1e-7f, | |||
| bool amsgrad = false, | |||
| string name = "Adam"); | |||
| /// <summary> | |||
| /// Construct a new RMSprop optimizer. | |||
| /// </summary> | |||
| /// <param name="learning_rate"></param> | |||
| /// <param name="rho"></param> | |||
| /// <param name="momentum"></param> | |||
| /// <param name="epsilon"></param> | |||
| /// <param name="centered"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| IOptimizer RMSprop(float learning_rate = 0.001f, | |||
| float rho = 0.9f, | |||
| float momentum = 0.0f, | |||
| float epsilon = 1e-7f, | |||
| bool centered = false, | |||
| string name = "RMSprop"); | |||
| IOptimizer SGD(float learning_rate); | |||
| } | |||
| } | |||
| @@ -0,0 +1,12 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Models | |||
| { | |||
| public interface IModelsApi | |||
| { | |||
| public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null); | |||
| } | |||
| } | |||
| @@ -65,14 +65,6 @@ namespace Tensorflow | |||
| InitGradientEnvironment(); | |||
| } | |||
| public void UseKeras<T>() where T : IKerasApi, new() | |||
| { | |||
| if (keras == null) | |||
| { | |||
| keras = new T(); | |||
| } | |||
| } | |||
| public string VERSION => c_api.StringPiece(c_api.TF_Version()); | |||
| private void InitGradientEnvironment() | |||
| @@ -7,6 +7,6 @@ namespace Tensorflow | |||
| /// </summary> | |||
| public static class KerasApi | |||
| { | |||
| public static KerasInterface keras { get; } = new KerasInterface(); | |||
| public static KerasInterface keras { get; } = KerasInterface.Instance; | |||
| } | |||
| } | |||
| @@ -18,6 +18,28 @@ namespace Tensorflow.Keras | |||
| { | |||
| public class KerasInterface : IKerasApi | |||
| { | |||
| private static KerasInterface _instance = null; | |||
| private static readonly object _lock = new object(); | |||
| private KerasInterface() | |||
| { | |||
| Tensorflow.Binding.tf.keras = this; | |||
| } | |||
| public static KerasInterface Instance | |||
| { | |||
| get | |||
| { | |||
| lock (_lock) | |||
| { | |||
| if (_instance is null) | |||
| { | |||
| _instance = new KerasInterface(); | |||
| } | |||
| return _instance; | |||
| } | |||
| } | |||
| } | |||
| public KerasDataset datasets { get; } = new KerasDataset(); | |||
| public IInitializersApi initializers { get; } = new InitializersApi(); | |||
| public Regularizers regularizers { get; } = new Regularizers(); | |||
| @@ -27,9 +49,9 @@ namespace Tensorflow.Keras | |||
| public Preprocessing preprocessing { get; } = new Preprocessing(); | |||
| ThreadLocal<BackendImpl> _backend = new ThreadLocal<BackendImpl>(() => new BackendImpl()); | |||
| public BackendImpl backend => _backend.Value; | |||
| public OptimizerApi optimizers { get; } = new OptimizerApi(); | |||
| public IOptimizerApi optimizers { get; } = new OptimizerApi(); | |||
| public IMetricsApi metrics { get; } = new MetricsApi(); | |||
| public ModelsApi models { get; } = new ModelsApi(); | |||
| public IModelsApi models { get; } = new ModelsApi(); | |||
| public KerasUtils utils { get; } = new KerasUtils(); | |||
| public Sequential Sequential(List<ILayer> layers = null, | |||
| @@ -9,12 +9,12 @@ using ThirdParty.Tensorflow.Python.Keras.Protobuf; | |||
| namespace Tensorflow.Keras.Models | |||
| { | |||
| public class ModelsApi | |||
| public class ModelsApi: IModelsApi | |||
| { | |||
| public Functional from_config(ModelConfig config) | |||
| => Functional.from_config(config); | |||
| public Model load_model(string filepath, bool compile = true, LoadOptions? options = null) | |||
| public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null) | |||
| { | |||
| return KerasLoadModelUtils.load_model(filepath, compile: compile, options: options) as Model; | |||
| } | |||
| @@ -1,8 +1,9 @@ | |||
| using Tensorflow.Keras.ArgsDefinition; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Keras.Optimizers | |||
| { | |||
| public class OptimizerApi | |||
| public class OptimizerApi: IOptimizerApi | |||
| { | |||
| /// <summary> | |||
| /// Adam optimization is a stochastic gradient descent method that is based on | |||
| @@ -15,7 +16,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| /// <param name="amsgrad"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public OptimizerV2 Adam(float learning_rate = 0.001f, | |||
| public IOptimizer Adam(float learning_rate = 0.001f, | |||
| float beta_1 = 0.9f, | |||
| float beta_2 = 0.999f, | |||
| float epsilon = 1e-7f, | |||
| @@ -38,7 +39,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| /// <param name="centered"></param> | |||
| /// <param name="name"></param> | |||
| /// <returns></returns> | |||
| public OptimizerV2 RMSprop(float learning_rate = 0.001f, | |||
| public IOptimizer RMSprop(float learning_rate = 0.001f, | |||
| float rho = 0.9f, | |||
| float momentum = 0.0f, | |||
| float epsilon = 1e-7f, | |||
| @@ -54,7 +55,7 @@ namespace Tensorflow.Keras.Optimizers | |||
| Name = name | |||
| }); | |||
| public SGD SGD(float learning_rate) | |||
| public IOptimizer SGD(float learning_rate) | |||
| => new SGD(learning_rate); | |||
| } | |||
| } | |||
| @@ -10,8 +10,6 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| [TestInitialize] | |||
| public void TestInit() | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| if (!tf.executing_eagerly()) | |||
| tf.enable_eager_execution(); | |||
| tf.Context.ensure_initialized(); | |||
| @@ -150,7 +150,6 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| [TestMethod, Ignore("WIP")] | |||
| public void SimpleRNN() | |||
| { | |||
| tf.UseKeras<KerasInterface>(); | |||
| var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
| /*var simple_rnn = keras.layers.SimpleRNN(4); | |||
| var output = simple_rnn.Apply(inputs); | |||
| @@ -3,6 +3,7 @@ using Tensorflow.Keras.Engine; | |||
| using System.Diagnostics; | |||
| using static Tensorflow.KerasApi; | |||
| using Tensorflow.Keras.Saving; | |||
| using Tensorflow.Keras.Models; | |||
| namespace TensorFlowNET.Keras.UnitTest | |||
| { | |||
| @@ -18,7 +19,7 @@ namespace TensorFlowNET.Keras.UnitTest | |||
| var model = GetFunctionalModel(); | |||
| var config = model.get_config(); | |||
| Debug.Assert(config is ModelConfig); | |||
| var new_model = keras.models.from_config(config as ModelConfig); | |||
| var new_model = new ModelsApi().from_config(config as ModelConfig); | |||
| Assert.AreEqual(model.Layers.Count, new_model.Layers.Count); | |||
| } | |||