| @@ -26,7 +26,7 @@ namespace Tensorflow | |||
| string prefix = ""; | |||
| var graph = ops.get_default_graph(); | |||
| with(new ops.name_scope(name, "import", input_map.Values), scope => | |||
| with(ops.name_scope(name, "import", input_map.Values), scope => | |||
| { | |||
| prefix = scope; | |||
| /*if (!string.IsNullOrEmpty(prefix)) | |||
| @@ -16,8 +16,8 @@ namespace Tensorflow | |||
| /// <param name="default_name">The default name to use if the name argument is None.</param> | |||
| /// <param name="values">The list of Tensor arguments that are passed to the op function.</param> | |||
| /// <returns>The scope name.</returns> | |||
| public static ops.name_scope name_scope(string name, | |||
| public static ops.NameScope name_scope(string name, | |||
| string default_name = "", | |||
| object values = null) => new ops.name_scope(name, default_name, values); | |||
| object values = null) => new ops.NameScope(name, default_name, values); | |||
| } | |||
| } | |||
| @@ -58,7 +58,7 @@ namespace Tensorflow | |||
| **/ | |||
| var grads = new Dictionary<string, Tensor[][]>(); | |||
| with(new ops.name_scope(name, "gradients", values: all), scope => | |||
| with(ops.name_scope(name, "gradients", values: all), scope => | |||
| { | |||
| string grad_scope = scope; | |||
| // Get a uid for this call to gradients that can be used to help | |||
| @@ -131,7 +131,7 @@ namespace Tensorflow | |||
| // for ops that do not have gradients. | |||
| var grad_fn = ops.get_gradient_function(op); | |||
| with(new ops.name_scope(op.name + "_grad"), scope1 => | |||
| with(ops.name_scope(op.name + "_grad"), scope1 => | |||
| { | |||
| string name1 = scope1; | |||
| if (grad_fn != null) | |||
| @@ -31,7 +31,7 @@ namespace Tensorflow.Keras.Engine | |||
| bool build_graph = tf_utils.are_all_symbolic_tensors(input_list); | |||
| // Handle Keras mask propagation from previous layer to current layer. | |||
| Python.with(new ops.name_scope(_name_scope()), delegate | |||
| Python.with(ops.name_scope(_name_scope()), delegate | |||
| { | |||
| if (!built) | |||
| { | |||
| @@ -92,7 +92,7 @@ namespace Tensorflow.Layers | |||
| auxiliary_name_scope: false), scope => | |||
| { | |||
| _current_scope = scope; | |||
| Python.with(new ops.name_scope(_name_scope()), delegate | |||
| Python.with(ops.name_scope(_name_scope()), delegate | |||
| { | |||
| @@ -33,7 +33,7 @@ namespace Tensorflow | |||
| parameters.Add("validate_args", validate_args); | |||
| parameters.Add("allow_nan_stats", allow_nan_stats); | |||
| with(new ops.name_scope(name, "", new { loc, scale }), scope => | |||
| with(ops.name_scope(name, "", new { loc, scale }), scope => | |||
| { | |||
| with(ops.control_dependencies(validate_args ? new Operation[] { scale.op} : new Operation[] { }), cd => | |||
| { | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow | |||
| string scope = "", | |||
| string loss_collection= "losses") | |||
| { | |||
| with(new ops.name_scope(scope, | |||
| with(ops.name_scope(scope, | |||
| "sparse_softmax_cross_entropy_loss", | |||
| (logits, labels, weights)), | |||
| namescope => | |||
| @@ -44,7 +44,7 @@ namespace Tensorflow | |||
| var input_types = new List<TF_DataType>(); | |||
| dynamic values = null; | |||
| return with(new ops.name_scope(name), scope => | |||
| return with(ops.name_scope(name), scope => | |||
| { | |||
| var inferred_from = new Dictionary<string, object>(); | |||
| var base_types = new List<TF_DataType>(); | |||
| @@ -12,7 +12,7 @@ namespace Tensorflow | |||
| public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| { | |||
| dtype = dtype.as_base_dtype(); | |||
| return with(new ops.name_scope(name, "zeros", shape), scope => | |||
| return with(ops.name_scope(name, "zeros", shape), scope => | |||
| { | |||
| name = scope; | |||
| switch (dtype) | |||
| @@ -68,7 +68,7 @@ namespace Tensorflow | |||
| private static Tensor ones_like_impl<T>(T tensor, TF_DataType dtype, string name, bool optimize = true) | |||
| { | |||
| return with(new ops.name_scope(name, "ones_like", new { tensor }), scope => | |||
| return with(ops.name_scope(name, "ones_like", new { tensor }), scope => | |||
| { | |||
| name = scope; | |||
| var tensor1 = ops.convert_to_tensor(tensor, name: "tensor"); | |||
| @@ -84,7 +84,7 @@ namespace Tensorflow | |||
| public static Tensor ones(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
| { | |||
| dtype = dtype.as_base_dtype(); | |||
| return with(new ops.name_scope(name, "ones", new { shape }), scope => | |||
| return with(ops.name_scope(name, "ones", new { shape }), scope => | |||
| { | |||
| name = scope; | |||
| var output = gen_array_ops.fill(shape, constant_op.constant(1.0f, dtype: dtype), name: name); | |||
| @@ -130,7 +130,7 @@ namespace Tensorflow | |||
| private static Tensor shape_internal(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32) | |||
| { | |||
| return with(new ops.name_scope(name, "Shape", new { input }), scope => | |||
| return with(ops.name_scope(name, "Shape", new { input }), scope => | |||
| { | |||
| name = scope; | |||
| @@ -151,7 +151,7 @@ namespace Tensorflow | |||
| private static Tensor size_internal(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32) | |||
| { | |||
| return with(new ops.name_scope(name, "Size", new Tensor[] { input }), scope => | |||
| return with(ops.name_scope(name, "Size", new Tensor[] { input }), scope => | |||
| { | |||
| name = scope; | |||
| @@ -182,7 +182,7 @@ namespace Tensorflow | |||
| public static Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
| { | |||
| return with(new ops.name_scope(name, "zeros_like", new Tensor[] { tensor }), scope => | |||
| return with(ops.name_scope(name, "zeros_like", new Tensor[] { tensor }), scope => | |||
| { | |||
| name = scope; | |||
| tensor = ops.convert_to_tensor(tensor, name: "tensor"); | |||
| @@ -9,7 +9,7 @@ namespace Tensorflow | |||
| { | |||
| public static Operation group<T>(T[] inputs, string name = null) where T : ITensorOrOperation | |||
| { | |||
| return with(new ops.name_scope(name, "group_deps", inputs), scope => | |||
| return with(ops.name_scope(name, "group_deps", inputs), scope => | |||
| { | |||
| name = scope; | |||
| @@ -83,7 +83,7 @@ namespace Tensorflow | |||
| public static Tensor[] tuple(Tensor[] tensors, string name = null, Operation[] control_inputs = null) | |||
| { | |||
| return with(new ops.name_scope(name, "tuple", tensors), scope => | |||
| return with(ops.name_scope(name, "tuple", tensors), scope => | |||
| { | |||
| name = scope; | |||
| var gating_ops = tensors.Select(x => x.op).ToList(); | |||
| @@ -115,7 +115,7 @@ namespace Tensorflow | |||
| values.AddRange(dependencies); | |||
| values.Add(output_tensor); | |||
| return with(new ops.name_scope(name, "control_dependency", values), scope => | |||
| return with(ops.name_scope(name, "control_dependency", values), scope => | |||
| { | |||
| name = scope; | |||
| @@ -20,7 +20,7 @@ namespace Tensorflow | |||
| string name = null, | |||
| string max_norm = null) | |||
| { | |||
| return with(new ops.name_scope(name, "embedding_lookup", new { @params, ids }), scope => | |||
| return with(ops.name_scope(name, "embedding_lookup", new { @params, ids }), scope => | |||
| { | |||
| name = scope; | |||
| int np = 1; | |||
| @@ -15,7 +15,7 @@ namespace Tensorflow | |||
| if(base_type == x.dtype) | |||
| return x; | |||
| return with(new ops.name_scope(name, "Cast", new { x }), scope => | |||
| return with(ops.name_scope(name, "Cast", new { x }), scope => | |||
| { | |||
| x = ops.convert_to_tensor(x, name: "x"); | |||
| if (x.dtype.as_base_dtype() != base_type) | |||
| @@ -166,7 +166,7 @@ namespace Tensorflow | |||
| if (delta == null) | |||
| delta = 1; | |||
| return with(new ops.name_scope(name, "Range", new object[] { start, limit, delta }), scope => | |||
| return with(ops.name_scope(name, "Range", new object[] { start, limit, delta }), scope => | |||
| { | |||
| name = scope; | |||
| var start1 = ops.convert_to_tensor(start, name: "start"); | |||
| @@ -179,7 +179,7 @@ namespace Tensorflow | |||
| public static Tensor floordiv(Tensor x, Tensor y, string name = null) | |||
| { | |||
| return with(new ops.name_scope(name, "floordiv", new { x, y }), scope => | |||
| return with(ops.name_scope(name, "floordiv", new { x, y }), scope => | |||
| { | |||
| return gen_math_ops.floor_div(x, y, scope); | |||
| }); | |||
| @@ -187,7 +187,7 @@ namespace Tensorflow | |||
| public static Tensor rank_internal(Tensor input, string name = null, bool optimize = true) | |||
| { | |||
| return with(new ops.name_scope(name, "Rank", new List<Tensor> { input }), scope => | |||
| return with(ops.name_scope(name, "Rank", new List<Tensor> { input }), scope => | |||
| { | |||
| name = scope; | |||
| var input_tensor = ops.convert_to_tensor(input); | |||
| @@ -207,7 +207,7 @@ namespace Tensorflow | |||
| { | |||
| Tensor result = null; | |||
| with(new ops.name_scope(name, "MatMul", new Tensor[] { a, b }), scope => | |||
| with(ops.name_scope(name, "MatMul", new Tensor[] { a, b }), scope => | |||
| { | |||
| name = scope; | |||
| @@ -237,7 +237,7 @@ namespace Tensorflow | |||
| if (dt.is_floating() || dt.is_integer()) | |||
| return x; | |||
| return with(new ops.name_scope(name, "Conj", new List<Tensor> { x }), scope => | |||
| return with(ops.name_scope(name, "Conj", new List<Tensor> { x }), scope => | |||
| { | |||
| return x; | |||
| @@ -19,7 +19,7 @@ namespace Tensorflow | |||
| string name = null, | |||
| bool keep_dims = false) | |||
| { | |||
| return with<ops.name_scope, (Tensor, Tensor)>(new ops.name_scope(name, "moments", new { x, axes }), scope => | |||
| return with(ops.name_scope(name, "moments", new { x, axes }), scope => | |||
| { | |||
| // The dynamic range of fp16 is too limited to support the collection of | |||
| // sufficient statistics. As a workaround we simply perform the operations | |||
| @@ -23,7 +23,7 @@ namespace Tensorflow | |||
| int? seed = null, | |||
| string name = null) | |||
| { | |||
| return with(new ops.name_scope(name, "random_normal", new { shape, mean, stddev }), scope => | |||
| return with(ops.name_scope(name, "random_normal", new { shape, mean, stddev }), scope => | |||
| { | |||
| var shape_tensor = _ShapeTensor(shape); | |||
| var mean_tensor = ops.convert_to_tensor(mean, dtype: dtype, name: "mean"); | |||
| @@ -53,7 +53,7 @@ namespace Tensorflow | |||
| int? seed = null, | |||
| string name = null) | |||
| { | |||
| return with(new ops.name_scope(name, "random_uniform", new { shape, minval, maxval }), scope => | |||
| return with(ops.name_scope(name, "random_uniform", new { shape, minval, maxval }), scope => | |||
| { | |||
| name = scope; | |||
| var tensorShape = _ShapeTensor(shape); | |||
| @@ -41,7 +41,7 @@ namespace Tensorflow | |||
| if( y is Tensor tr) | |||
| dtype = tr.dtype.as_base_dtype(); | |||
| var namescope = new ops.name_scope(null, name, new { x, y }); | |||
| var namescope = ops.name_scope(null, name, new { x, y }); | |||
| return with(namescope, scope => | |||
| { | |||
| Tensor result = null; | |||
| @@ -87,7 +87,7 @@ namespace Tensorflow | |||
| _create_slots(var_list); | |||
| var update_ops = new List<Operation>(); | |||
| return with(new ops.name_scope(name, Name), scope => | |||
| return with(ops.name_scope(name, Name), scope => | |||
| { | |||
| name = scope; | |||
| _prepare(); | |||
| @@ -98,7 +98,7 @@ namespace Tensorflow | |||
| continue; | |||
| var scope_name = var.op.name; | |||
| with(new ops.name_scope("update_" + scope_name), scope2 => | |||
| with(ops.name_scope("update_" + scope_name), scope2 => | |||
| { | |||
| update_ops.Add(processor.update_op(this, grad)); | |||
| }); | |||
| @@ -79,7 +79,7 @@ namespace Tensorflow | |||
| Tensor save_tensor = null; | |||
| Operation restore_op = null; | |||
| return with(new ops.name_scope(name, "save", saveables.Select(x => x.op).ToArray()), scope => | |||
| return with(ops.name_scope(name, "save", saveables.Select(x => x.op).ToArray()), scope => | |||
| { | |||
| name = scope; | |||
| @@ -17,7 +17,7 @@ namespace Tensorflow | |||
| private static Tensor op_helper<T>(string default_name, RefVariable x, T y) | |||
| { | |||
| var tensor1 = x.value(); | |||
| return with(new ops.name_scope(null, default_name, new { tensor1, y }), scope => { | |||
| return with(ops.name_scope(null, default_name, new { tensor1, y }), scope => { | |||
| var tensor2 = ops.convert_to_tensor(y, tensor1.dtype.as_base_dtype(), "y"); | |||
| return gen_math_ops.add(tensor1, tensor2, scope); | |||
| }); | |||
| @@ -118,7 +118,7 @@ namespace Tensorflow | |||
| ops.init_scope(); | |||
| var values = init_from_fn ? new object[0] : new object[] { initial_value }; | |||
| with(new ops.name_scope(name, "Variable", values), scope => | |||
| with(ops.name_scope(name, "Variable", values), scope => | |||
| { | |||
| name = scope; | |||
| if (init_from_fn) | |||
| @@ -132,7 +132,7 @@ namespace Tensorflow | |||
| List = new AttrValue.Types.ListValue() | |||
| }; | |||
| attr.List.S.Add(ByteString.CopyFromUtf8($"loc:{true_name}")); | |||
| with(new ops.name_scope("Initializer"), scope2 => | |||
| with(ops.name_scope("Initializer"), scope2 => | |||
| { | |||
| _initial_value = (initial_value as Func<Tensor>)(); | |||
| _initial_value = ops.convert_to_tensor(_initial_value, name: "initial_value", dtype: dtype); | |||
| @@ -39,7 +39,7 @@ namespace Tensorflow | |||
| VariableAggregation aggregation= VariableAggregation.NONE) | |||
| { | |||
| string full_name = !string.IsNullOrEmpty(this._name) ? this._name + "/" + name : name; | |||
| return with(new ops.name_scope(null), scope => | |||
| return with(ops.name_scope(null), scope => | |||
| { | |||
| if (dtype == TF_DataType.DtInvalid) | |||
| dtype = _dtype; | |||
| @@ -20,7 +20,7 @@ namespace Tensorflow | |||
| private VariableScope _scope; | |||
| private string _default_name; | |||
| private object _values; | |||
| private ops.name_scope _current_name_scope; | |||
| private ops.NameScope _current_name_scope; | |||
| private bool _auxiliary_name_scope; | |||
| private PureVariableScope _cached_pure_variable_scope; | |||
| private bool? _reuse; | |||
| @@ -68,7 +68,7 @@ namespace Tensorflow | |||
| private VariableScope _enter_scope_uncached() | |||
| { | |||
| ops.name_scope current_name_scope; | |||
| ops.NameScope current_name_scope; | |||
| PureVariableScope pure_variable_scope = null; | |||
| VariableScope entered_pure_variable_scope; | |||
| @@ -82,14 +82,14 @@ namespace Tensorflow | |||
| if(!string.IsNullOrEmpty(name_scope)) | |||
| // Hack to reenter | |||
| name_scope += "/"; | |||
| current_name_scope = new ops.name_scope(name_scope); | |||
| current_name_scope = ops.name_scope(name_scope); | |||
| } | |||
| if (_name != null || _scope != null) | |||
| { | |||
| var name_scope = _name == null ? _scope._name.Split('/').Last() : _name; | |||
| if (name_scope != null || current_name_scope != null) | |||
| current_name_scope = new ops.name_scope(name_scope); | |||
| current_name_scope = ops.name_scope(name_scope); | |||
| current_name_scope.__enter__(); | |||
| var current_name_scope_name = current_name_scope; | |||
| _current_name_scope = current_name_scope; | |||
| @@ -106,7 +106,7 @@ namespace Tensorflow | |||
| } | |||
| else | |||
| { | |||
| current_name_scope = new ops.name_scope(_default_name); | |||
| current_name_scope = ops.name_scope(_default_name); | |||
| current_name_scope.__enter__(); | |||
| string current_name_scope_name = current_name_scope; | |||
| _current_name_scope = current_name_scope; | |||
| @@ -7,10 +7,14 @@ namespace Tensorflow | |||
| { | |||
| public partial class ops | |||
| { | |||
| public static NameScope name_scope(string name, | |||
| string default_name = "", | |||
| object values = null) => new NameScope(name, default_name, values); | |||
| /// <summary> | |||
| /// Returns a context manager that creates hierarchical names for operations. | |||
| /// </summary> | |||
| public class name_scope : IPython | |||
| public class NameScope : IPython | |||
| { | |||
| public string _name; | |||
| public string _default_name; | |||
| @@ -20,7 +24,7 @@ namespace Tensorflow | |||
| public string old_stack = ""; | |||
| private object _g_manager; | |||
| public name_scope(string name, string default_name = "", object values = null) | |||
| public NameScope(string name, string default_name = "", object values = null) | |||
| { | |||
| _name = name; | |||
| _default_name = default_name; | |||
| @@ -58,7 +62,7 @@ namespace Tensorflow | |||
| /// __enter__() | |||
| /// </summary> | |||
| /// <param name="ns"></param> | |||
| public static implicit operator string(name_scope ns) | |||
| public static implicit operator string(NameScope ns) | |||
| { | |||
| return ns._name_scope; | |||
| } | |||
| @@ -15,7 +15,7 @@ namespace TensorFlowNET.UnitTest | |||
| [TestMethod] | |||
| public void NestedNameScope() | |||
| { | |||
| with(new ops.name_scope("scope1"), scope1 => | |||
| with(new ops.NameScope("scope1"), scope1 => | |||
| { | |||
| name = scope1; | |||
| Assert.AreEqual("scope1", g._name_stack); | |||
| @@ -24,7 +24,7 @@ namespace TensorFlowNET.UnitTest | |||
| var const1 = tf.constant(1.0); | |||
| Assert.AreEqual("scope1/Const:0", const1.name); | |||
| with(new ops.name_scope("scope2"), scope2 => | |||
| with(new ops.NameScope("scope2"), scope2 => | |||
| { | |||
| name = scope2; | |||
| Assert.AreEqual("scope1/scope2", g._name_stack); | |||