| @@ -21,6 +21,7 @@ namespace Tensorflow | |||
| public static variable_scope variable_scope(VariableScope scope, | |||
| string default_name = null, | |||
| object values = null, | |||
| bool? reuse = null, | |||
| bool auxiliary_name_scope = true) => new variable_scope(scope, | |||
| default_name, | |||
| values, | |||
| @@ -37,6 +37,8 @@ namespace Tensorflow | |||
| /// </summary> | |||
| private Dictionary<string, object> _collections = new Dictionary<string, object>(); | |||
| public bool building_function; | |||
| public Graph() | |||
| { | |||
| _handle = c_api.TF_NewGraph(); | |||
| @@ -9,9 +9,12 @@ namespace Tensorflow.Keras.Engine | |||
| /// </summary> | |||
| public class InputSpec | |||
| { | |||
| public InputSpec(TF_DataType dtype = TF_DataType.DtInvalid) | |||
| { | |||
| public int ndim; | |||
| public InputSpec(TF_DataType dtype = TF_DataType.DtInvalid, | |||
| int? ndim = null) | |||
| { | |||
| this.ndim = ndim.Value; | |||
| } | |||
| } | |||
| } | |||
| @@ -1,6 +1,7 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Utils; | |||
| namespace Tensorflow.Keras.Engine | |||
| { | |||
| @@ -12,77 +13,49 @@ namespace Tensorflow.Keras.Engine | |||
| /// </summary> | |||
| public class Layer : CheckpointableBase | |||
| { | |||
| protected bool trainable; | |||
| protected string _name; | |||
| protected TF_DataType _dtype; | |||
| protected Graph _graph; | |||
| protected string _base_name; | |||
| protected VariableScope _scope; | |||
| /// <summary> | |||
| /// A stateful layer is a layer whose updates are run during inference too, | |||
| /// for instance stateful RNNs. | |||
| /// </summary> | |||
| protected bool stateful; | |||
| /// <summary> | |||
| /// Indicates whether `build` needs to be called upon layer call, to create | |||
| /// the layer's weights. | |||
| /// </summary> | |||
| protected bool built; | |||
| /// <summary> | |||
| /// Provides information about which inputs are compatible with the layer. | |||
| /// </summary> | |||
| protected InputSpec input_spec; | |||
| protected bool supports_masking; | |||
| public Layer(bool trainable = true, | |||
| string name = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid) | |||
| { | |||
| this.trainable = trainable; | |||
| this.stateful = false; | |||
| this.built = false; | |||
| this.supports_masking = false; | |||
| _init_set_name(name); | |||
| } | |||
| public Tensor apply(Tensor inputs) | |||
| { | |||
| return __call__(inputs); | |||
| } | |||
| public Tensor __call__(Tensor inputs, | |||
| VariableScope scope = null) | |||
| { | |||
| _set_scope(scope); | |||
| _graph = ops._get_graph_from_inputs(new List<Tensor> { inputs }, graph: _graph); | |||
| var scope_context_manager = tf.variable_scope(_scope); | |||
| var input_list = new Tensor[] { inputs }; | |||
| // We will attempt to build a TF graph if & only if all inputs are symbolic. | |||
| // This is always the case in graph mode. It can also be the case in eager | |||
| // mode when all inputs can be traced back to `keras.Input()` (when building | |||
| // models using the functional API). | |||
| bool build_graph = tf_utils.are_all_symbolic_tensors(input_list); | |||
| // Handle Keras mask propagation from previous layer to current layer. | |||
| Python.with(new ops.name_scope(_name_scope()), delegate | |||
| { | |||
| if (!built) | |||
| { | |||
| _maybe_build(inputs); | |||
| } | |||
| }); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| private void _init_set_name(string name) | |||
| protected virtual string _name_scope() | |||
| { | |||
| if (string.IsNullOrEmpty(name)) | |||
| (_name, _base_name) = _make_unique_name(); | |||
| return null; | |||
| } | |||
| private (string, string) _make_unique_name() | |||
| protected void _maybe_build(Tensor inputs) | |||
| { | |||
| string base_name = "conv2d"; | |||
| string name = base_layer_utils.unique_layer_name(base_name); | |||
| return (name, base_name); | |||
| var input_list = new Tensor[] { inputs }; | |||
| build(inputs.getShape()); | |||
| } | |||
| private void _set_scope(VariableScope scope = null) | |||
| protected virtual void build(TensorShape input_shape) | |||
| { | |||
| if (_scope == null) | |||
| { | |||
| Python.with(tf.variable_scope(scope, default_name: _base_name), captured_scope => | |||
| { | |||
| _scope = captured_scope; | |||
| }); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -6,7 +6,7 @@ using Tensorflow.Operations.Activation; | |||
| namespace Tensorflow.Keras.Layers | |||
| { | |||
| public class Conv : Layer | |||
| public class Conv : Tensorflow.Layers.Layer | |||
| { | |||
| protected int rank; | |||
| protected int filters; | |||
| @@ -45,6 +45,15 @@ namespace Tensorflow.Keras.Layers | |||
| this.use_bias = use_bias; | |||
| this.kernel_initializer = kernel_initializer; | |||
| this.bias_initializer = bias_initializer; | |||
| input_spec = new InputSpec(ndim: rank + 2); | |||
| } | |||
| protected override void build(TensorShape input_shape) | |||
| { | |||
| int channel_axis = data_format == "channels_first" ? 1 : -1; | |||
| int input_dim = input_shape.Dimensions[input_shape.NDim - 1]; | |||
| var kernel_shape = new int[] { kernel_size[0], kernel_size[1], input_dim, filters }; | |||
| add_weight(); | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,20 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Linq; | |||
| using System.Text; | |||
| namespace Tensorflow.Keras.Utils | |||
| { | |||
| public class tf_utils | |||
| { | |||
| public static bool are_all_symbolic_tensors(Tensor[] tensors) | |||
| { | |||
| return tensors.Select(x => is_symbolic_tensor(x)).Count() == tensors.Length; | |||
| } | |||
| public static bool is_symbolic_tensor(Tensor tensor) | |||
| { | |||
| return true; | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,132 @@ | |||
| using System; | |||
| using System.Collections.Generic; | |||
| using System.Text; | |||
| using Tensorflow.Keras.Engine; | |||
| namespace Tensorflow.Layers | |||
| { | |||
| public class Layer : Keras.Engine.Layer | |||
| { | |||
| protected bool trainable; | |||
| protected string _name; | |||
| protected TF_DataType _dtype; | |||
| protected Graph _graph; | |||
| protected string _base_name; | |||
| protected VariableScope _scope; | |||
| protected VariableScope _current_scope; | |||
| /// <summary> | |||
| /// A stateful layer is a layer whose updates are run during inference too, | |||
| /// for instance stateful RNNs. | |||
| /// </summary> | |||
| protected bool stateful; | |||
| /// <summary> | |||
| /// Provides information about which inputs are compatible with the layer. | |||
| /// </summary> | |||
| protected InputSpec input_spec; | |||
| protected bool supports_masking; | |||
| protected bool? _reuse; | |||
| public Layer(bool trainable = true, | |||
| string name = null, | |||
| TF_DataType dtype = TF_DataType.DtInvalid, | |||
| bool? _reuse = null) | |||
| { | |||
| this.trainable = trainable; | |||
| this.stateful = false; | |||
| this._reuse = _reuse; | |||
| this.built = false; | |||
| this.supports_masking = false; | |||
| _init_set_name(name); | |||
| } | |||
| public Tensor apply(Tensor inputs) | |||
| { | |||
| return __call__(inputs); | |||
| } | |||
| public Tensor __call__(Tensor inputs, | |||
| VariableScope scope = null) | |||
| { | |||
| _set_scope(scope); | |||
| _graph = ops._get_graph_from_inputs(new List<Tensor> { inputs }, graph: _graph); | |||
| variable_scope scope_context_manager = null; | |||
| if (built) | |||
| { | |||
| } | |||
| else | |||
| { | |||
| scope_context_manager = tf.variable_scope(_scope, | |||
| auxiliary_name_scope: false); | |||
| } | |||
| Python.with(scope_context_manager, scope2 => _current_scope = scope2); | |||
| // Actually call layer | |||
| var outputs = base.__call__(inputs); | |||
| throw new NotImplementedException(""); | |||
| } | |||
| protected virtual void add_weight() | |||
| { | |||
| var default_graph = ops.get_default_graph(); | |||
| Graph init_graph = null; | |||
| RefVariable[] existing_variables = null; | |||
| if (default_graph.building_function) | |||
| { | |||
| throw new NotImplementedException("add_weight"); | |||
| } | |||
| else | |||
| { | |||
| init_graph = default_graph; | |||
| existing_variables = variables.global_variables().ToArray(); | |||
| } | |||
| var dtype = TF_DataType.TF_FLOAT; | |||
| _set_scope(); | |||
| var reuse = built || (_reuse != null && _reuse.Value); | |||
| Python.with(tf.variable_scope(_scope, | |||
| reuse: reuse, | |||
| auxiliary_name_scope: false), scope => | |||
| { | |||
| _current_scope = scope; | |||
| Python.with(new ops.name_scope(_name_scope()), delegate | |||
| { | |||
| }); | |||
| }); | |||
| } | |||
| private void _init_set_name(string name) | |||
| { | |||
| if (string.IsNullOrEmpty(name)) | |||
| (_name, _base_name) = _make_unique_name(); | |||
| } | |||
| private (string, string) _make_unique_name() | |||
| { | |||
| string base_name = "conv2d"; | |||
| string name = base_layer_utils.unique_layer_name(base_name); | |||
| return (name, base_name); | |||
| } | |||
| protected override string _name_scope() | |||
| { | |||
| return _current_scope.original_name_scope; | |||
| } | |||
| private void _set_scope(VariableScope scope = null) | |||
| { | |||
| if (_scope == null) | |||
| { | |||
| Python.with(tf.variable_scope(scope, default_name: _base_name), captured_scope => | |||
| { | |||
| _scope = captured_scope; | |||
| }); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -28,7 +28,7 @@ namespace Tensorflow | |||
| if(np == 1) | |||
| { | |||
| var gather = array_ops.gather(@params, ids, name: name); | |||
| var result = _clip(@params, ids, max_norm); | |||
| var result = _clip(gather, ids, max_norm); | |||
| return array_ops.identity(result); | |||
| } | |||
| @@ -37,7 +37,7 @@ namespace Tensorflow | |||
| }); | |||
| } | |||
| public static Tensor _clip(RefVariable @params, Tensor ids, string max_norm = null) | |||
| public static Tensor _clip(Tensor @params, Tensor ids, string max_norm = null) | |||
| { | |||
| if (max_norm == null) | |||
| return @params; | |||
| @@ -22,5 +22,13 @@ namespace Tensorflow | |||
| else | |||
| variable_scopes_count[scope_name] = 1; | |||
| } | |||
| public int variable_scope_count(string scope_name) | |||
| { | |||
| if (variable_scopes_count.ContainsKey(scope_name)) | |||
| return variable_scopes_count[scope_name]; | |||
| else | |||
| return 0; | |||
| } | |||
| } | |||
| } | |||
| @@ -5,6 +5,9 @@ using System.Text; | |||
| namespace Tensorflow | |||
| { | |||
| /// <summary> | |||
| /// A context manager for defining ops that creates variables (layers). | |||
| /// </summary> | |||
| public class variable_scope : IPython | |||
| { | |||
| public static string _VARSTORE_KEY = "__variable_store"; | |||
| @@ -20,17 +23,19 @@ namespace Tensorflow | |||
| private ops.name_scope _current_name_scope; | |||
| private bool _auxiliary_name_scope; | |||
| private PureVariableScope _cached_pure_variable_scope; | |||
| private bool? _reuse; | |||
| public variable_scope(string name, | |||
| string default_name = "", | |||
| object values = null, | |||
| bool? reuse = null, | |||
| bool auxiliary_name_scope = true) | |||
| { | |||
| _name = name; | |||
| _default_name = default_name; | |||
| _values = values; | |||
| _current_name_scope = null; | |||
| _reuse = reuse; | |||
| _use_resource = false; | |||
| if (_default_name == null && _name == null) | |||
| throw new TypeError("If default_name is None then name is required"); | |||
| @@ -41,13 +46,14 @@ namespace Tensorflow | |||
| public variable_scope(VariableScope scope, | |||
| string default_name = "", | |||
| object values = null, | |||
| bool? reuse = null, | |||
| bool auxiliary_name_scope = true) | |||
| { | |||
| _scope = scope; | |||
| _default_name = default_name; | |||
| _values = values; | |||
| _current_name_scope = null; | |||
| _reuse = reuse; | |||
| _use_resource = false; | |||
| if (_default_name == null && _scope == null) | |||
| throw new TypeError("If default_name is None then scope is required"); | |||
| @@ -63,6 +69,9 @@ namespace Tensorflow | |||
| private VariableScope _enter_scope_uncached() | |||
| { | |||
| ops.name_scope current_name_scope; | |||
| PureVariableScope pure_variable_scope = null; | |||
| VariableScope entered_pure_variable_scope; | |||
| if (_auxiliary_name_scope) | |||
| // Create a new name scope later | |||
| current_name_scope = null; | |||
| @@ -85,18 +94,40 @@ namespace Tensorflow | |||
| var current_name_scope_name = current_name_scope; | |||
| _current_name_scope = current_name_scope; | |||
| string old_name_scope = current_name_scope_name; | |||
| PureVariableScope pure_variable_scope = null; | |||
| if(_scope == null) | |||
| pure_variable_scope = new PureVariableScope(_name, old_name_scope: old_name_scope); | |||
| else | |||
| pure_variable_scope = new PureVariableScope(_scope, old_name_scope: old_name_scope); | |||
| pure_variable_scope.__enter__(); | |||
| VariableScope entered_pure_variable_scope = pure_variable_scope; | |||
| entered_pure_variable_scope = pure_variable_scope; | |||
| _cached_pure_variable_scope = pure_variable_scope; | |||
| return entered_pure_variable_scope; | |||
| } | |||
| else | |||
| { | |||
| current_name_scope = new ops.name_scope(_default_name); | |||
| current_name_scope.__enter__(); | |||
| string current_name_scope_name = current_name_scope; | |||
| _current_name_scope = current_name_scope; | |||
| string unique_default_name = _get_unique_variable_scope(_default_name); | |||
| pure_variable_scope = new PureVariableScope(unique_default_name, | |||
| old_name_scope: current_name_scope_name); | |||
| pure_variable_scope.__enter__(); | |||
| entered_pure_variable_scope = pure_variable_scope; | |||
| _cached_pure_variable_scope = pure_variable_scope; | |||
| return entered_pure_variable_scope; | |||
| } | |||
| } | |||
| throw new NotImplementedException("_enter_scope_uncached"); | |||
| public static string _get_unique_variable_scope(string prefix) | |||
| { | |||
| var var_scope_store = get_variable_scope_store(); | |||
| var current_scope = get_variable_scope(); | |||
| string name = !string.IsNullOrEmpty(current_scope._name) ? current_scope._name + "/" + prefix : prefix; | |||
| if (var_scope_store.variable_scope_count(name) == 0) | |||
| return prefix; | |||
| throw new NotImplementedException("_get_unique_variable_scope"); | |||
| } | |||
| public static RefVariable default_variable_creator(object initial_value, | |||