Browse Source

Merge pull request #207 from SciEvan/master

Update Logistic Regression
tags/v0.9
Haiping GitHub 6 years ago
parent
commit
17a974a043
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 22 additions and 2 deletions
  1. +22
    -2
      docs/source/LogisticRegression.md
  2. BIN
      docs/source/sigmoid.png

+ 22
- 2
docs/source/LogisticRegression.md View File

@@ -8,9 +8,29 @@ Logistic regression is a statistical analysis method used to predict a data valu

The dependent variable of logistics regression can be two-category or multi-category, but the two-category is more common and easier to explain. So the most common use in practice is the logistics of the two classifications.

逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的物流回归。
逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。

The general steps for regression problems are as follows:

Logistics regression corresponds to a hidden status p through the function trumpetp = S(ax+b), then determine the value of the dependent
variable according to the size of p and 1-p.The function S here is the Sigmoid function:
S(t)=1/(1+e^(-t)
By changing t to ax+b, you can get the parameter form of the logistic regression model:
P(x;a,b) = 1 / (1 + e^(-ax+b))

logistic回归通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数:
S(t)=1/(1+e^(-t)
将t换成ax+b,可以得到逻辑回归模型的参数形式:
P(x;a,b) = 1 / (1 + e^(-ax+b))

![image](https://github.com/SciEvan/TensorFlow.NET/tree/master/docs/source/sigmoid.png)

sigmoid函数的图像

By the function of the function S, we can limit the output value to the interval [0, 1],
p(x) can then be used to represent the probability p(y=1|x), the probability that y is divided into 1 group when an x occurs.

通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率


The full example is [here](https://github.com/SciSharp/TensorFlow.NET/blob/master/test/TensorFlowNET.Examples/LogisticRegression.cs).

BIN
docs/source/sigmoid.png View File

Before After
Width: 600  |  Height: 400  |  Size: 14 kB

Loading…
Cancel
Save