| @@ -8,9 +8,29 @@ Logistic regression is a statistical analysis method used to predict a data valu | |||||
| The dependent variable of logistics regression can be two-category or multi-category, but the two-category is more common and easier to explain. So the most common use in practice is the logistics of the two classifications. | The dependent variable of logistics regression can be two-category or multi-category, but the two-category is more common and easier to explain. So the most common use in practice is the logistics of the two classifications. | ||||
| 逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的物流回归。 | |||||
| 逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。 | |||||
| The general steps for regression problems are as follows: | |||||
| Logistics regression corresponds to a hidden status p through the function trumpetp = S(ax+b), then determine the value of the dependent | |||||
| variable according to the size of p and 1-p.The function S here is the Sigmoid function: | |||||
| S(t)=1/(1+e^(-t) | |||||
| By changing t to ax+b, you can get the parameter form of the logistic regression model: | |||||
| P(x;a,b) = 1 / (1 + e^(-ax+b)) | |||||
| logistic回归通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数: | |||||
| S(t)=1/(1+e^(-t) | |||||
| 将t换成ax+b,可以得到逻辑回归模型的参数形式: | |||||
| P(x;a,b) = 1 / (1 + e^(-ax+b)) | |||||
|  | |||||
| sigmoid函数的图像 | |||||
| By the function of the function S, we can limit the output value to the interval [0, 1], | |||||
| p(x) can then be used to represent the probability p(y=1|x), the probability that y is divided into 1 group when an x occurs. | |||||
| 通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率 | |||||
| The full example is [here](https://github.com/SciSharp/TensorFlow.NET/blob/master/test/TensorFlowNET.Examples/LogisticRegression.cs). | The full example is [here](https://github.com/SciSharp/TensorFlow.NET/blob/master/test/TensorFlowNET.Examples/LogisticRegression.cs). | ||||