Browse Source

registry multi models on model and pipeline

master
智丞 3 years ago
parent
commit
951077c729
4 changed files with 87 additions and 61 deletions
  1. +9
    -8
      modelscope/models/nlp/masked_language_model.py
  2. +2
    -2
      modelscope/pipelines/builder.py
  3. +18
    -11
      modelscope/pipelines/nlp/fill_mask_pipeline.py
  4. +58
    -40
      tests/pipelines/test_fill_mask.py

+ 9
- 8
modelscope/models/nlp/masked_language_model.py View File

@@ -1,14 +1,16 @@
from typing import Any, Dict, Optional, Union

import numpy as np

from ...utils.constant import Tasks
from ..base import Model, Tensor
from ..builder import MODELS
from ...utils.constant import Tasks

__all__ = ['MaskedLanguageModel']


@MODELS.register_module(Tasks.fill_mask, module_name=r'sbert')
@MODELS.register_module(Tasks.fill_mask, module_name=r'veco')
class MaskedLanguageModel(Model):

def __init__(self, model_dir: str, *args, **kwargs):
@@ -17,8 +19,8 @@ class MaskedLanguageModel(Model):
super().__init__(model_dir, *args, **kwargs)

self.config = AutoConfig.from_pretrained(model_dir)
self.model = AutoModelForMaskedLM.from_pretrained(model_dir, config=self.config)
self.model = AutoModelForMaskedLM.from_pretrained(
model_dir, config=self.config)

def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]:
"""return the result by the model
@@ -35,9 +37,8 @@ class MaskedLanguageModel(Model):
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value
}
"""
rst = self.model(
input_ids=inputs["input_ids"],
attention_mask=inputs['attention_mask'],
token_type_ids=inputs["token_type_ids"]
)
rst = self.model(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
token_type_ids=inputs['token_type_ids'])
return {'logits': rst['logits'], 'input_ids': inputs['input_ids']}

+ 2
- 2
modelscope/pipelines/builder.py View File

@@ -24,8 +24,8 @@ DEFAULT_MODEL_FOR_PIPELINE = {
Tasks.image_generation:
('person-image-cartoon',
'damo/cv_unet_person-image-cartoon_compound-models'),
Tasks.fill_mask:
('sbert')
Tasks.fill_mask: ('sbert', 'damo/nlp_structbert_fill-mask_chinese-large'),
Tasks.fill_mask: ('veco', 'damo/nlp_veco_fill-mask_large')
}




+ 18
- 11
modelscope/pipelines/nlp/fill_mask_pipeline.py View File

@@ -10,6 +10,7 @@ __all__ = ['FillMaskPipeline']


@PIPELINES.register_module(Tasks.fill_mask, module_name=r'sbert')
@PIPELINES.register_module(Tasks.fill_mask, module_name=r'veco')
class FillMaskPipeline(Pipeline):

def __init__(self, model: MaskedLanguageModel,
@@ -36,22 +37,28 @@ class FillMaskPipeline(Pipeline):
Dict[str, str]: the prediction results
"""
import numpy as np
logits = inputs["logits"].detach().numpy()
input_ids = inputs["input_ids"].detach().numpy()
logits = inputs['logits'].detach().numpy()
input_ids = inputs['input_ids'].detach().numpy()
pred_ids = np.argmax(logits, axis=-1)
rst_ids = np.where(input_ids==self.mask_id[self.model.config.model_type], pred_ids, input_ids)
rst_ids = np.where(
input_ids == self.mask_id[self.model.config.model_type], pred_ids,
input_ids)
pred_strings = []
for ids in rst_ids:
if self.model.config.model_type == 'veco':
pred_string = self.tokenizer.decode(ids).split('</s>')[0].replace("<s>", "").replace("</s>", "").replace("<pad>", "")
elif self.model.config.vocab_size == 21128: # zh bert
pred_string = self.tokenizer.decode(ids).split(
'</s>')[0].replace('<s>',
'').replace('</s>',
'').replace('<pad>', '')
elif self.model.config.vocab_size == 21128: # zh bert
pred_string = self.tokenizer.convert_ids_to_tokens(ids)
pred_string = ''.join(pred_string).replace('##','')
pred_string = pred_string.split('[SEP]')[0].replace('[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
else: ## en bert
pred_string = ''.join(pred_string).replace('##', '')
pred_string = pred_string.split('[SEP]')[0].replace(
'[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
else: ## en bert
pred_string = self.tokenizer.decode(ids)
pred_string = pred_string.split('[SEP]')[0].replace('[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
pred_string = pred_string.split('[SEP]')[0].replace(
'[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
pred_strings.append(pred_string)

return {'pred_string': pred_strings}

return {'pred_string': pred_strings}

+ 58
- 40
tests/pipelines/test_fill_mask.py View File

@@ -5,24 +5,41 @@ import unittest

from maas_hub.snapshot_download import snapshot_download

from modelscope.models import Model
from modelscope.models.nlp import MaskedLanguageModel
from modelscope.pipelines import FillMaskPipeline, pipeline
from modelscope.preprocessors import FillMaskPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.models import Model
from modelscope.utils.hub import get_model_cache_dir
from modelscope.utils.test_utils import test_level


class FillMaskTest(unittest.TestCase):
model_id_sbert = {'zh': 'damo/nlp_structbert_fill-mask-chinese_large',
'en': 'damo/nlp_structbert_fill-mask-english_large'}
model_id_sbert = {
'zh': 'damo/nlp_structbert_fill-mask-chinese_large',
'en': 'damo/nlp_structbert_fill-mask-english_large'
}
model_id_veco = 'damo/nlp_veco_fill-mask_large'

ori_texts = {"zh": "段誉轻挥折扇,摇了摇头,说道:“你师父是你的师父,你师父可不是我的师父。你师父差得动你,你师父可差不动我。",
"en": "Everything in what you call reality is really just a reflection of your consciousness. Your whole universe is just a mirror reflection of your story."}
ori_texts = {
'zh':
f'段誉轻挥折扇,摇了摇头,说道:“你师父是你的师父,你师父可不是我的师父。'
f'你师父差得动你,你师父可差不动我。',
'en':
f'Everything in what you call reality is really just a r'
f'eflection of your consciousness. Your whole universe is'
f'just a mirror reflection of your story.'
}

test_inputs = {"zh": "段誉轻[MASK]折扇,摇了摇[MASK],[MASK]道:“你师父是你的[MASK][MASK],你师父可不是[MASK]的师父。你师父差得动你,你师父可[MASK]不动我。",
"en": "Everything in [MASK] you call reality is really [MASK] a reflection of your [MASK]. Your whole universe is just a mirror [MASK] of your story."}
test_inputs = {
'zh':
f'段誉轻[MASK]折扇,摇了摇[MASK],[MASK]道:“你师父是你的[MASK][MASK]'
f',你师父可不是[MASK]的师父。你师父差得动你,你师父可[MASK]不动我。',
'en':
f'Everything in [MASK] you call reality is really [MASK] a '
f'reflection of your [MASK]. Your whole universe is just a '
f'mirror [MASK] of your story.'
}

#def test_run(self):
# # sbert
@@ -37,51 +54,52 @@ class FillMaskTest(unittest.TestCase):
# ori_text = self.ori_texts[language]
# test_input = self.test_inputs[language]
# print(
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: {pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: '
# f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'
# )

## veco
#model_dir = snapshot_download(self.model_id_veco)
#preprocessor = FillMaskPreprocessor(
# model_dir, first_sequence='sentence', second_sequence=None)
#model = MaskedLanguageModel(model_dir)
#pipeline1 = FillMaskPipeline(model, preprocessor)
#pipeline2 = pipeline(
# Tasks.fill_mask, model=model, preprocessor=preprocessor)
#for language in ["zh", "en"]:
# ori_text = self.ori_texts[language]
# test_input = self.test_inputs["zh"].replace("[MASK]", "<mask>")
# print(
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: {pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'
## veco
#model_dir = snapshot_download(self.model_id_veco)
#preprocessor = FillMaskPreprocessor(
# model_dir, first_sequence='sentence', second_sequence=None)
#model = MaskedLanguageModel(model_dir)
#pipeline1 = FillMaskPipeline(model, preprocessor)
#pipeline2 = pipeline(
# Tasks.fill_mask, model=model, preprocessor=preprocessor)
#for language in ["zh", "en"]:
# ori_text = self.ori_texts[language]
# test_input = self.test_inputs["zh"].replace("[MASK]", "<mask>")
# print(
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: '
# f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'

def test_run_with_model_from_modelhub(self):
for language in ["zh"]:
for language in ['zh']:
print(self.model_id_sbert[language])
model = Model.from_pretrained(self.model_id_sbert[language])
print("model", model.model_dir)
print('model', model.model_dir)
preprocessor = FillMaskPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
model.model_dir,
first_sequence='sentence',
second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
print(pipeline_ins(self_test_inputs[language]))

task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
print(pipeline_ins(self.test_inputs[language]))

#def test_run_with_model_name(self):
## veco
#pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_veco)
#for language in ["zh", "en"]:
# input_ = self.test_inputs[language].replace("[MASK]", "<mask>")
# print(pipeline_ins(input_))
## veco
#pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_veco)
#for language in ["zh", "en"]:
# input_ = self.test_inputs[language].replace("[MASK]", "<mask>")
# print(pipeline_ins(input_))

## structBert
#for language in ["zh"]:
# pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_sbert[language])
# print(pipeline_ins(self_test_inputs[language]))
## structBert
#for language in ["zh"]:
# pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_sbert[language])
# print(pipeline_ins(self_test_inputs[language]))


if __name__ == '__main__':
unittest.main()


Loading…
Cancel
Save