Browse Source

fill mask

master
suluyan 3 years ago
parent
commit
953e8ffbfa
8 changed files with 253 additions and 2 deletions
  1. +1
    -0
      modelscope/models/nlp/__init__.py
  2. +43
    -0
      modelscope/models/nlp/masked_language_model.py
  3. +2
    -0
      modelscope/pipelines/builder.py
  4. +1
    -0
      modelscope/pipelines/nlp/__init__.py
  5. +57
    -0
      modelscope/pipelines/nlp/fill_mask_pipeline.py
  6. +61
    -1
      modelscope/preprocessors/nlp.py
  7. +1
    -1
      modelscope/utils/constant.py
  8. +87
    -0
      tests/pipelines/test_fill_mask.py

+ 1
- 0
modelscope/models/nlp/__init__.py View File

@@ -1,3 +1,4 @@
from .sentence_similarity_model import * # noqa F403
from .sequence_classification_model import * # noqa F403
from .text_generation_model import * # noqa F403
from .masked_language_model import * # noqa F403

+ 43
- 0
modelscope/models/nlp/masked_language_model.py View File

@@ -0,0 +1,43 @@
from typing import Any, Dict, Optional, Union

import numpy as np
from ..base import Model, Tensor
from ..builder import MODELS
from ...utils.constant import Tasks

__all__ = ['MaskedLanguageModel']


@MODELS.register_module(Tasks.fill_mask, module_name=r'sbert')
class MaskedLanguageModel(Model):

def __init__(self, model_dir: str, *args, **kwargs):
from sofa.utils.backend import AutoConfig, AutoModelForMaskedLM
self.model_dir = model_dir
super().__init__(model_dir, *args, **kwargs)

self.config = AutoConfig.from_pretrained(model_dir)
self.model = AutoModelForMaskedLM.from_pretrained(model_dir, config=self.config)


def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]:
"""return the result by the model

Args:
input (Dict[str, Any]): the preprocessed data

Returns:
Dict[str, np.ndarray]: results
Example:
{
'predictions': array([1]), # lable 0-negative 1-positive
'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32),
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value
}
"""
rst = self.model(
input_ids=inputs["input_ids"],
attention_mask=inputs['attention_mask'],
token_type_ids=inputs["token_type_ids"]
)
return {'logits': rst['logits'], 'input_ids': inputs['input_ids']}

+ 2
- 0
modelscope/pipelines/builder.py View File

@@ -24,6 +24,8 @@ DEFAULT_MODEL_FOR_PIPELINE = {
Tasks.image_generation:
('person-image-cartoon',
'damo/cv_unet_person-image-cartoon_compound-models'),
Tasks.fill_mask:
('sbert')
}




+ 1
- 0
modelscope/pipelines/nlp/__init__.py View File

@@ -1,3 +1,4 @@
from .sentence_similarity_pipeline import * # noqa F403
from .sequence_classification_pipeline import * # noqa F403
from .text_generation_pipeline import * # noqa F403
from .fill_mask_pipeline import * # noqa F403

+ 57
- 0
modelscope/pipelines/nlp/fill_mask_pipeline.py View File

@@ -0,0 +1,57 @@
from typing import Dict

from modelscope.models.nlp import MaskedLanguageModel
from modelscope.preprocessors import FillMaskPreprocessor
from modelscope.utils.constant import Tasks
from ..base import Pipeline, Tensor
from ..builder import PIPELINES

__all__ = ['FillMaskPipeline']


@PIPELINES.register_module(Tasks.fill_mask, module_name=r'sbert')
class FillMaskPipeline(Pipeline):

def __init__(self, model: MaskedLanguageModel,
preprocessor: FillMaskPreprocessor, **kwargs):
"""use `model` and `preprocessor` to create a nlp text classification pipeline for prediction

Args:
model (SequenceClassificationModel): a model instance
preprocessor (SequenceClassificationPreprocessor): a preprocessor instance
"""

super().__init__(model=model, preprocessor=preprocessor, **kwargs)
self.preprocessor = preprocessor
self.tokenizer = preprocessor.tokenizer
self.mask_id = {'veco': 250001, 'sbert': 103}

def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
"""process the prediction results

Args:
inputs (Dict[str, Any]): _description_

Returns:
Dict[str, str]: the prediction results
"""
import numpy as np
logits = inputs["logits"].detach().numpy()
input_ids = inputs["input_ids"].detach().numpy()
pred_ids = np.argmax(logits, axis=-1)
rst_ids = np.where(input_ids==self.mask_id[self.model.config.model_type], pred_ids, input_ids)
pred_strings = []
for ids in rst_ids:
if self.model.config.model_type == 'veco':
pred_string = self.tokenizer.decode(ids).split('</s>')[0].replace("<s>", "").replace("</s>", "").replace("<pad>", "")
elif self.model.config.vocab_size == 21128: # zh bert
pred_string = self.tokenizer.convert_ids_to_tokens(ids)
pred_string = ''.join(pred_string).replace('##','')
pred_string = pred_string.split('[SEP]')[0].replace('[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
else: ## en bert
pred_string = self.tokenizer.decode(ids)
pred_string = pred_string.split('[SEP]')[0].replace('[CLS]', '').replace('[SEP]', '').replace('[UNK]', '')
pred_strings.append(pred_string)

return {'pred_string': pred_strings}


+ 61
- 1
modelscope/preprocessors/nlp.py View File

@@ -12,7 +12,8 @@ from .builder import PREPROCESSORS

__all__ = [
'Tokenize', 'SequenceClassificationPreprocessor',
'TextGenerationPreprocessor'
'TextGenerationPreprocessor',
'FillMaskPreprocessor'
]


@@ -166,8 +167,67 @@ class TextGenerationPreprocessor(Preprocessor):
truncation=True,
max_length=max_seq_length)

rst['input_ids'].append(feature['input_ids'])
rst['attention_mask'].append(feature['attention_mask'])
rst['token_type_ids'].append(feature['token_type_ids'])
return {k: torch.tensor(v) for k, v in rst.items()}


@PREPROCESSORS.register_module(
Fields.nlp, module_name=r'sbert')
class FillMaskPreprocessor(Preprocessor):

def __init__(self, model_dir: str, *args, **kwargs):
"""preprocess the data via the vocab.txt from the `model_dir` path

Args:
model_dir (str): model path
"""
super().__init__(*args, **kwargs)
from sofa.utils.backend import AutoTokenizer
self.model_dir = model_dir
self.first_sequence: str = kwargs.pop('first_sequence',
'first_sequence')
self.sequence_length = kwargs.pop('sequence_length', 128)

self.tokenizer = AutoTokenizer.from_pretrained(model_dir)

@type_assert(object, str)
def __call__(self, data: str) -> Dict[str, Any]:
"""process the raw input data

Args:
data (str): a sentence
Example:
'you are so handsome.'

Returns:
Dict[str, Any]: the preprocessed data
"""
import torch
new_data = {self.first_sequence: data}
# preprocess the data for the model input

rst = {
'input_ids': [],
'attention_mask': [],
'token_type_ids': []
}

max_seq_length = self.sequence_length

text_a = new_data[self.first_sequence]
feature = self.tokenizer(
text_a,
padding='max_length',
truncation=True,
max_length=max_seq_length,
return_token_type_ids=True)

rst['input_ids'].append(feature['input_ids'])
rst['attention_mask'].append(feature['attention_mask'])
rst['token_type_ids'].append(feature['token_type_ids'])

return {k: torch.tensor(v) for k, v in rst.items()}


+ 1
- 1
modelscope/utils/constant.py View File

@@ -42,7 +42,7 @@ class Tasks(object):
table_question_answering = 'table-question-answering'
feature_extraction = 'feature-extraction'
sentence_similarity = 'sentence-similarity'
fill_mask = 'fill-mask '
fill_mask = 'fill-mask'
summarization = 'summarization'
question_answering = 'question-answering'



+ 87
- 0
tests/pipelines/test_fill_mask.py View File

@@ -0,0 +1,87 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import unittest

from maas_hub.snapshot_download import snapshot_download

from modelscope.models.nlp import MaskedLanguageModel
from modelscope.pipelines import FillMaskPipeline, pipeline
from modelscope.preprocessors import FillMaskPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.models import Model
from modelscope.utils.hub import get_model_cache_dir
from modelscope.utils.test_utils import test_level

class FillMaskTest(unittest.TestCase):
model_id_sbert = {'zh': 'damo/nlp_structbert_fill-mask-chinese_large',
'en': 'damo/nlp_structbert_fill-mask-english_large'}
model_id_veco = 'damo/nlp_veco_fill-mask_large'

ori_texts = {"zh": "段誉轻挥折扇,摇了摇头,说道:“你师父是你的师父,你师父可不是我的师父。你师父差得动你,你师父可差不动我。",
"en": "Everything in what you call reality is really just a reflection of your consciousness. Your whole universe is just a mirror reflection of your story."}

test_inputs = {"zh": "段誉轻[MASK]折扇,摇了摇[MASK],[MASK]道:“你师父是你的[MASK][MASK],你师父可不是[MASK]的师父。你师父差得动你,你师父可[MASK]不动我。",
"en": "Everything in [MASK] you call reality is really [MASK] a reflection of your [MASK]. Your whole universe is just a mirror [MASK] of your story."}

#def test_run(self):
# # sbert
# for language in ["zh", "en"]:
# model_dir = snapshot_download(self.model_id_sbert[language])
# preprocessor = FillMaskPreprocessor(
# model_dir, first_sequence='sentence', second_sequence=None)
# model = MaskedLanguageModel(model_dir)
# pipeline1 = FillMaskPipeline(model, preprocessor)
# pipeline2 = pipeline(
# Tasks.fill_mask, model=model, preprocessor=preprocessor)
# ori_text = self.ori_texts[language]
# test_input = self.test_inputs[language]
# print(
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: {pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'
# )

## veco
#model_dir = snapshot_download(self.model_id_veco)
#preprocessor = FillMaskPreprocessor(
# model_dir, first_sequence='sentence', second_sequence=None)
#model = MaskedLanguageModel(model_dir)
#pipeline1 = FillMaskPipeline(model, preprocessor)
#pipeline2 = pipeline(
# Tasks.fill_mask, model=model, preprocessor=preprocessor)
#for language in ["zh", "en"]:
# ori_text = self.ori_texts[language]
# test_input = self.test_inputs["zh"].replace("[MASK]", "<mask>")
# print(
# f'ori_text: {ori_text}\ninput: {test_input}\npipeline1: {pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}'


def test_run_with_model_from_modelhub(self):
for language in ["zh"]:
print(self.model_id_sbert[language])
model = Model.from_pretrained(self.model_id_sbert[language])
print("model", model.model_dir)
preprocessor = FillMaskPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
print(pipeline_ins(self_test_inputs[language]))


#def test_run_with_model_name(self):
## veco
#pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_veco)
#for language in ["zh", "en"]:
# input_ = self.test_inputs[language].replace("[MASK]", "<mask>")
# print(pipeline_ins(input_))

## structBert
#for language in ["zh"]:
# pipeline_ins = pipeline(
# task=Tasks.fill_mask, model=self.model_id_sbert[language])
# print(pipeline_ins(self_test_inputs[language]))


if __name__ == '__main__':
unittest.main()


Loading…
Cancel
Save