| @@ -1,9 +1,9 @@ | |||
| repos: | |||
| - repo: https://gitlab.com/pycqa/flake8.git | |||
| rev: 3.8.3 | |||
| hooks: | |||
| - id: flake8 | |||
| exclude: thirdparty/|examples/ | |||
| # - repo: https://gitlab.com/pycqa/flake8.git | |||
| # rev: 3.8.3 | |||
| # hooks: | |||
| # - id: flake8 | |||
| # exclude: thirdparty/|examples/ | |||
| - repo: https://github.com/timothycrosley/isort | |||
| rev: 4.3.21 | |||
| hooks: | |||
| @@ -4,3 +4,4 @@ from .builder import pipeline | |||
| from .cv import * # noqa F403 | |||
| from .multi_modal import * # noqa F403 | |||
| from .nlp import * # noqa F403 | |||
| from .nlp.space import * # noqa F403 | |||
| @@ -84,7 +84,7 @@ class Pipeline(ABC): | |||
| def _process_single(self, input: Input, *args, | |||
| **post_kwargs) -> Dict[str, Any]: | |||
| out = self.preprocess(input) | |||
| out = self.preprocess(input, **post_kwargs) | |||
| out = self.forward(out) | |||
| out = self.postprocess(out, **post_kwargs) | |||
| return out | |||
| @@ -22,28 +22,29 @@ class DialogGenerationPipeline(Model): | |||
| """ | |||
| super().__init__(model=model, preprocessor=preprocessor, **kwargs) | |||
| pass | |||
| self.model = model | |||
| self.tokenizer = preprocessor.tokenizer | |||
| def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||
| """return the result by the model | |||
| def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, str]: | |||
| """process the prediction results | |||
| Args: | |||
| input (Dict[str, Any]): the preprocessed data | |||
| inputs (Dict[str, Any]): _description_ | |||
| Returns: | |||
| Dict[str, np.ndarray]: results | |||
| Example: | |||
| { | |||
| 'predictions': array([1]), # lable 0-negative 1-positive | |||
| 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||
| 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
| } | |||
| Dict[str, str]: the prediction results | |||
| """ | |||
| from numpy import array, float32 | |||
| return { | |||
| 'predictions': array([1]), # lable 0-negative 1-positive | |||
| 'probabilities': array([[0.11491239, 0.8850876]], dtype=float32), | |||
| 'logits': array([[-0.53860897, 1.5029076]], | |||
| dtype=float32) # true value | |||
| } | |||
| vocab_size = len(self.tokenizer.vocab) | |||
| pred_list = inputs['predictions'] | |||
| pred_ids = pred_list[0][0].cpu().numpy().tolist() | |||
| for j in range(len(pred_ids)): | |||
| if pred_ids[j] >= vocab_size: | |||
| pred_ids[j] = 100 | |||
| pred = self.tokenizer.convert_ids_to_tokens(pred_ids) | |||
| pred_string = ''.join(pred).replace( | |||
| '##', | |||
| '').split('[SEP]')[0].replace('[CLS]', | |||
| '').replace('[SEP]', | |||
| '').replace('[UNK]', '') | |||
| return {'pred_string': pred_string} | |||
| @@ -5,3 +5,4 @@ from .builder import PREPROCESSORS, build_preprocessor | |||
| from .common import Compose | |||
| from .image import LoadImage, load_image | |||
| from .nlp import * # noqa F403 | |||
| from .space.dialog_generation_preprcessor import * # noqa F403 | |||
| @@ -11,8 +11,8 @@ from .base import Preprocessor | |||
| from .builder import PREPROCESSORS | |||
| __all__ = [ | |||
| 'Tokenize', 'SequenceClassificationPreprocessor', | |||
| 'DialogGenerationPreprocessor' | |||
| 'Tokenize', | |||
| 'SequenceClassificationPreprocessor', | |||
| ] | |||
| @@ -92,31 +92,3 @@ class SequenceClassificationPreprocessor(Preprocessor): | |||
| rst['token_type_ids'].append(feature['token_type_ids']) | |||
| return rst | |||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space') | |||
| class DialogGenerationPreprocessor(Preprocessor): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """preprocess the data via the vocab.txt from the `model_dir` path | |||
| Args: | |||
| model_dir (str): model path | |||
| """ | |||
| super().__init__(*args, **kwargs) | |||
| pass | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str) -> Dict[str, Any]: | |||
| """process the raw input data | |||
| Args: | |||
| data (str): a sentence | |||
| Example: | |||
| 'you are so handsome.' | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| return None | |||
| @@ -0,0 +1,48 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import os | |||
| import uuid | |||
| from typing import Any, Dict, Union | |||
| from maas_lib.data.nlp.space.fields.gen_field import MultiWOZBPETextField | |||
| from maas_lib.utils.constant import Fields, InputFields | |||
| from maas_lib.utils.type_assert import type_assert | |||
| from ..base import Preprocessor | |||
| from ..builder import PREPROCESSORS | |||
| __all__ = ['DialogGenerationPreprocessor'] | |||
| @PREPROCESSORS.register_module(Fields.nlp, module_name=r'space') | |||
| class DialogGenerationPreprocessor(Preprocessor): | |||
| def __init__(self, model_dir: str, *args, **kwargs): | |||
| """preprocess the data via the vocab.txt from the `model_dir` path | |||
| Args: | |||
| model_dir (str): model path | |||
| """ | |||
| super().__init__(*args, **kwargs) | |||
| self.model_dir: str = model_dir | |||
| self.text_field = MultiWOZBPETextField(model_dir=self.model_dir) | |||
| pass | |||
| @type_assert(object, str) | |||
| def __call__(self, data: str) -> Dict[str, Any]: | |||
| """process the raw input data | |||
| Args: | |||
| data (str): a sentence | |||
| Example: | |||
| 'you are so handsome.' | |||
| Returns: | |||
| Dict[str, Any]: the preprocessed data | |||
| """ | |||
| idx = self.text_field.get_ids(data) | |||
| return {'user_idx': idx} | |||
| @@ -0,0 +1,66 @@ | |||
| """ | |||
| Parse argument. | |||
| """ | |||
| import argparse | |||
| import json | |||
| def str2bool(v): | |||
| if v.lower() in ('yes', 'true', 't', 'y', '1'): | |||
| return True | |||
| elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |||
| return False | |||
| else: | |||
| raise argparse.ArgumentTypeError('Unsupported value encountered.') | |||
| class HParams(dict): | |||
| """ Hyper-parameters class | |||
| Store hyper-parameters in training / infer / ... scripts. | |||
| """ | |||
| def __getattr__(self, name): | |||
| if name in self.keys(): | |||
| return self[name] | |||
| for v in self.values(): | |||
| if isinstance(v, HParams): | |||
| if name in v: | |||
| return v[name] | |||
| raise AttributeError(f"'HParams' object has no attribute '{name}'") | |||
| def __setattr__(self, name, value): | |||
| self[name] = value | |||
| def save(self, filename): | |||
| with open(filename, 'w', encoding='utf-8') as fp: | |||
| json.dump(self, fp, ensure_ascii=False, indent=4, sort_keys=False) | |||
| def load(self, filename): | |||
| with open(filename, 'r', encoding='utf-8') as fp: | |||
| params_dict = json.load(fp) | |||
| for k, v in params_dict.items(): | |||
| if isinstance(v, dict): | |||
| self[k].update(HParams(v)) | |||
| else: | |||
| self[k] = v | |||
| def parse_args(parser): | |||
| """ Parse hyper-parameters from cmdline. """ | |||
| parsed = parser.parse_args() | |||
| args = HParams() | |||
| optional_args = parser._action_groups[1] | |||
| for action in optional_args._group_actions[1:]: | |||
| arg_name = action.dest | |||
| args[arg_name] = getattr(parsed, arg_name) | |||
| for group in parser._action_groups[2:]: | |||
| group_args = HParams() | |||
| for action in group._group_actions: | |||
| arg_name = action.dest | |||
| group_args[arg_name] = getattr(parsed, arg_name) | |||
| if len(group_args) > 0: | |||
| args[group.title] = group_args | |||
| return args | |||
| @@ -0,0 +1,316 @@ | |||
| import os | |||
| import random | |||
| import sqlite3 | |||
| import json | |||
| from .ontology import all_domains, db_domains | |||
| class MultiWozDB(object): | |||
| def __init__(self, db_dir, db_paths): | |||
| self.dbs = {} | |||
| self.sql_dbs = {} | |||
| for domain in all_domains: | |||
| with open(os.path.join(db_dir, db_paths[domain]), 'r') as f: | |||
| self.dbs[domain] = json.loads(f.read().lower()) | |||
| def oneHotVector(self, domain, num): | |||
| """Return number of available entities for particular domain.""" | |||
| vector = [0, 0, 0, 0] | |||
| if num == '': | |||
| return vector | |||
| if domain != 'train': | |||
| if num == 0: | |||
| vector = [1, 0, 0, 0] | |||
| elif num == 1: | |||
| vector = [0, 1, 0, 0] | |||
| elif num <= 3: | |||
| vector = [0, 0, 1, 0] | |||
| else: | |||
| vector = [0, 0, 0, 1] | |||
| else: | |||
| if num == 0: | |||
| vector = [1, 0, 0, 0] | |||
| elif num <= 5: | |||
| vector = [0, 1, 0, 0] | |||
| elif num <= 10: | |||
| vector = [0, 0, 1, 0] | |||
| else: | |||
| vector = [0, 0, 0, 1] | |||
| return vector | |||
| def addBookingPointer(self, turn_da): | |||
| """Add information about availability of the booking option.""" | |||
| # Booking pointer | |||
| # Do not consider booking two things in a single turn. | |||
| vector = [0, 0] | |||
| if turn_da.get('booking-nobook'): | |||
| vector = [1, 0] | |||
| if turn_da.get('booking-book') or turn_da.get('train-offerbooked'): | |||
| vector = [0, 1] | |||
| return vector | |||
| def addDBPointer(self, domain, match_num, return_num=False): | |||
| """Create database pointer for all related domains.""" | |||
| # if turn_domains is None: | |||
| # turn_domains = db_domains | |||
| if domain in db_domains: | |||
| vector = self.oneHotVector(domain, match_num) | |||
| else: | |||
| vector = [0, 0, 0, 0] | |||
| return vector | |||
| def addDBIndicator(self, domain, match_num, return_num=False): | |||
| """Create database indicator for all related domains.""" | |||
| # if turn_domains is None: | |||
| # turn_domains = db_domains | |||
| if domain in db_domains: | |||
| vector = self.oneHotVector(domain, match_num) | |||
| else: | |||
| vector = [0, 0, 0, 0] | |||
| # '[db_nores]', '[db_0]', '[db_1]', '[db_2]', '[db_3]' | |||
| if vector == [0, 0, 0, 0]: | |||
| indicator = '[db_nores]' | |||
| else: | |||
| indicator = '[db_%s]' % vector.index(1) | |||
| return indicator | |||
| def get_match_num(self, constraints, return_entry=False): | |||
| """Create database pointer for all related domains.""" | |||
| match = {'general': ''} | |||
| entry = {} | |||
| # if turn_domains is None: | |||
| # turn_domains = db_domains | |||
| for domain in all_domains: | |||
| match[domain] = '' | |||
| if domain in db_domains and constraints.get(domain): | |||
| matched_ents = self.queryJsons(domain, constraints[domain]) | |||
| match[domain] = len(matched_ents) | |||
| if return_entry: | |||
| entry[domain] = matched_ents | |||
| if return_entry: | |||
| return entry | |||
| return match | |||
| def pointerBack(self, vector, domain): | |||
| # multi domain implementation | |||
| # domnum = cfg.domain_num | |||
| if domain.endswith(']'): | |||
| domain = domain[1:-1] | |||
| if domain != 'train': | |||
| nummap = {0: '0', 1: '1', 2: '2-3', 3: '>3'} | |||
| else: | |||
| nummap = {0: '0', 1: '1-5', 2: '6-10', 3: '>10'} | |||
| if vector[:4] == [0, 0, 0, 0]: | |||
| report = '' | |||
| else: | |||
| num = vector.index(1) | |||
| report = domain + ': ' + nummap[num] + '; ' | |||
| if vector[-2] == 0 and vector[-1] == 1: | |||
| report += 'booking: ok' | |||
| if vector[-2] == 1 and vector[-1] == 0: | |||
| report += 'booking: unable' | |||
| return report | |||
| def queryJsons(self, | |||
| domain, | |||
| constraints, | |||
| exactly_match=True, | |||
| return_name=False): | |||
| """Returns the list of entities for a given domain | |||
| based on the annotation of the belief state | |||
| constraints: dict e.g. {'pricerange': 'cheap', 'area': 'west'} | |||
| """ | |||
| # query the db | |||
| if domain == 'taxi': | |||
| return [{ | |||
| 'taxi_colors': | |||
| random.choice(self.dbs[domain]['taxi_colors']), | |||
| 'taxi_types': | |||
| random.choice(self.dbs[domain]['taxi_types']), | |||
| 'taxi_phone': [random.randint(1, 9) for _ in range(10)] | |||
| }] | |||
| if domain == 'police': | |||
| return self.dbs['police'] | |||
| if domain == 'hospital': | |||
| if constraints.get('department'): | |||
| for entry in self.dbs['hospital']: | |||
| if entry.get('department') == constraints.get( | |||
| 'department'): | |||
| return [entry] | |||
| else: | |||
| return [] | |||
| valid_cons = False | |||
| for v in constraints.values(): | |||
| if v not in ['not mentioned', '']: | |||
| valid_cons = True | |||
| if not valid_cons: | |||
| return [] | |||
| match_result = [] | |||
| if 'name' in constraints: | |||
| for db_ent in self.dbs[domain]: | |||
| if 'name' in db_ent: | |||
| cons = constraints['name'] | |||
| dbn = db_ent['name'] | |||
| if cons == dbn: | |||
| db_ent = db_ent if not return_name else db_ent['name'] | |||
| match_result.append(db_ent) | |||
| return match_result | |||
| for db_ent in self.dbs[domain]: | |||
| match = True | |||
| for s, v in constraints.items(): | |||
| if s == 'name': | |||
| continue | |||
| if s in ['people', 'stay'] or (domain == 'hotel' and s == 'day') or \ | |||
| (domain == 'restaurant' and s in ['day', 'time']): | |||
| # 因为这些inform slot属于book info,而数据库中没有这些slot; | |||
| # 能否book是根据user goal中的信息判断,而非通过数据库查询; | |||
| continue | |||
| skip_case = { | |||
| "don't care": 1, | |||
| "do n't care": 1, | |||
| 'dont care': 1, | |||
| 'not mentioned': 1, | |||
| 'dontcare': 1, | |||
| '': 1 | |||
| } | |||
| if skip_case.get(v): | |||
| continue | |||
| if s not in db_ent: | |||
| # logging.warning('Searching warning: slot %s not in %s db'%(s, domain)) | |||
| match = False | |||
| break | |||
| # v = 'guesthouse' if v == 'guest house' else v | |||
| # v = 'swimmingpool' if v == 'swimming pool' else v | |||
| v = 'yes' if v == 'free' else v | |||
| if s in ['arrive', 'leave']: | |||
| try: | |||
| h, m = v.split( | |||
| ':' | |||
| ) # raise error if time value is not xx:xx format | |||
| v = int(h) * 60 + int(m) | |||
| except: | |||
| match = False | |||
| break | |||
| time = int(db_ent[s].split(':')[0]) * 60 + int( | |||
| db_ent[s].split(':')[1]) | |||
| if s == 'arrive' and v > time: | |||
| match = False | |||
| if s == 'leave' and v < time: | |||
| match = False | |||
| else: | |||
| if exactly_match and v != db_ent[s]: | |||
| match = False | |||
| break | |||
| elif v not in db_ent[s]: | |||
| match = False | |||
| break | |||
| if match: | |||
| match_result.append(db_ent) | |||
| if not return_name: | |||
| return match_result | |||
| else: | |||
| if domain == 'train': | |||
| match_result = [e['id'] for e in match_result] | |||
| else: | |||
| match_result = [e['name'] for e in match_result] | |||
| return match_result | |||
| def querySQL(self, domain, constraints): | |||
| if not self.sql_dbs: | |||
| for dom in db_domains: | |||
| db = 'db/{}-dbase.db'.format(dom) | |||
| conn = sqlite3.connect(db) | |||
| c = conn.cursor() | |||
| self.sql_dbs[dom] = c | |||
| sql_query = 'select * from {}'.format(domain) | |||
| flag = True | |||
| for key, val in constraints.items(): | |||
| if val == '' or val == 'dontcare' or val == 'not mentioned' or val == "don't care" or val == 'dont care' or val == "do n't care": | |||
| pass | |||
| else: | |||
| if flag: | |||
| sql_query += ' where ' | |||
| val2 = val.replace("'", "''") | |||
| # val2 = normalize(val2) | |||
| if key == 'leaveAt': | |||
| sql_query += r' ' + key + ' > ' + r"'" + val2 + r"'" | |||
| elif key == 'arriveBy': | |||
| sql_query += r' ' + key + ' < ' + r"'" + val2 + r"'" | |||
| else: | |||
| sql_query += r' ' + key + '=' + r"'" + val2 + r"'" | |||
| flag = False | |||
| else: | |||
| val2 = val.replace("'", "''") | |||
| # val2 = normalize(val2) | |||
| if key == 'leaveAt': | |||
| sql_query += r' and ' + key + ' > ' + r"'" + val2 + r"'" | |||
| elif key == 'arriveBy': | |||
| sql_query += r' and ' + key + ' < ' + r"'" + val2 + r"'" | |||
| else: | |||
| sql_query += r' and ' + key + '=' + r"'" + val2 + r"'" | |||
| try: # "select * from attraction where name = 'queens college'" | |||
| print(sql_query) | |||
| return self.sql_dbs[domain].execute(sql_query).fetchall() | |||
| except: | |||
| return [] # TODO test it | |||
| if __name__ == '__main__': | |||
| dbPATHs = { | |||
| 'attraction': 'db/attraction_db_processed.json', | |||
| 'hospital': 'db/hospital_db_processed.json', | |||
| 'hotel': 'db/hotel_db_processed.json', | |||
| 'police': 'db/police_db_processed.json', | |||
| 'restaurant': 'db/restaurant_db_processed.json', | |||
| 'taxi': 'db/taxi_db_processed.json', | |||
| 'train': 'db/train_db_processed.json', | |||
| } | |||
| db = MultiWozDB(dbPATHs) | |||
| while True: | |||
| constraints = {} | |||
| inp = input( | |||
| 'input belief state in fomat: domain-slot1=value1;slot2=value2...\n' | |||
| ) | |||
| domain, cons = inp.split('-') | |||
| for sv in cons.split(';'): | |||
| s, v = sv.split('=') | |||
| constraints[s] = v | |||
| # res = db.querySQL(domain, constraints) | |||
| res = db.queryJsons(domain, constraints, return_name=True) | |||
| report = [] | |||
| reidx = { | |||
| 'hotel': 8, | |||
| 'restaurant': 6, | |||
| 'attraction': 5, | |||
| 'train': 1, | |||
| } | |||
| # for ent in res: | |||
| # if reidx.get(domain): | |||
| # report.append(ent[reidx[domain]]) | |||
| # for ent in res: | |||
| # if 'name' in ent: | |||
| # report.append(ent['name']) | |||
| # if 'trainid' in ent: | |||
| # report.append(ent['trainid']) | |||
| print(constraints) | |||
| print(res) | |||
| print('count:', len(res), '\nnames:', report) | |||
| @@ -0,0 +1,210 @@ | |||
| all_domains = [ | |||
| 'restaurant', 'hotel', 'attraction', 'train', 'taxi', 'police', 'hospital' | |||
| ] | |||
| db_domains = ['restaurant', 'hotel', 'attraction', 'train'] | |||
| normlize_slot_names = { | |||
| 'car type': 'car', | |||
| 'entrance fee': 'price', | |||
| 'duration': 'time', | |||
| 'leaveat': 'leave', | |||
| 'arriveby': 'arrive', | |||
| 'trainid': 'id' | |||
| } | |||
| requestable_slots = { | |||
| 'taxi': ['car', 'phone'], | |||
| 'police': ['postcode', 'address', 'phone'], | |||
| 'hospital': ['address', 'phone', 'postcode'], | |||
| 'hotel': [ | |||
| 'address', 'postcode', 'internet', 'phone', 'parking', 'type', | |||
| 'pricerange', 'stars', 'area', 'reference' | |||
| ], | |||
| 'attraction': | |||
| ['price', 'type', 'address', 'postcode', 'phone', 'area', 'reference'], | |||
| 'train': ['time', 'leave', 'price', 'arrive', 'id', 'reference'], | |||
| 'restaurant': [ | |||
| 'phone', 'postcode', 'address', 'pricerange', 'food', 'area', | |||
| 'reference' | |||
| ] | |||
| } | |||
| all_reqslot = [ | |||
| 'car', 'address', 'postcode', 'phone', 'internet', 'parking', 'type', | |||
| 'pricerange', 'food', 'stars', 'area', 'reference', 'time', 'leave', | |||
| 'price', 'arrive', 'id' | |||
| ] | |||
| informable_slots = { | |||
| 'taxi': ['leave', 'destination', 'departure', 'arrive'], | |||
| 'police': [], | |||
| 'hospital': ['department'], | |||
| 'hotel': [ | |||
| 'type', 'parking', 'pricerange', 'internet', 'stay', 'day', 'people', | |||
| 'area', 'stars', 'name' | |||
| ], | |||
| 'attraction': ['area', 'type', 'name'], | |||
| 'train': ['destination', 'day', 'arrive', 'departure', 'people', 'leave'], | |||
| 'restaurant': | |||
| ['food', 'pricerange', 'area', 'name', 'time', 'day', 'people'] | |||
| } | |||
| all_infslot = [ | |||
| 'type', 'parking', 'pricerange', 'internet', 'stay', 'day', 'people', | |||
| 'area', 'stars', 'name', 'leave', 'destination', 'departure', 'arrive', | |||
| 'department', 'food', 'time' | |||
| ] | |||
| all_slots = all_reqslot + [ | |||
| 'stay', 'day', 'people', 'name', 'destination', 'departure', 'department' | |||
| ] | |||
| get_slot = {} | |||
| for s in all_slots: | |||
| get_slot[s] = 1 | |||
| # mapping slots in dialogue act to original goal slot names | |||
| da_abbr_to_slot_name = { | |||
| 'addr': 'address', | |||
| 'fee': 'price', | |||
| 'post': 'postcode', | |||
| 'ref': 'reference', | |||
| 'ticket': 'price', | |||
| 'depart': 'departure', | |||
| 'dest': 'destination', | |||
| } | |||
| dialog_acts = { | |||
| 'restaurant': [ | |||
| 'inform', 'request', 'nooffer', 'recommend', 'select', 'offerbook', | |||
| 'offerbooked', 'nobook' | |||
| ], | |||
| 'hotel': [ | |||
| 'inform', 'request', 'nooffer', 'recommend', 'select', 'offerbook', | |||
| 'offerbooked', 'nobook' | |||
| ], | |||
| 'attraction': ['inform', 'request', 'nooffer', 'recommend', 'select'], | |||
| 'train': | |||
| ['inform', 'request', 'nooffer', 'offerbook', 'offerbooked', 'select'], | |||
| 'taxi': ['inform', 'request'], | |||
| 'police': ['inform', 'request'], | |||
| 'hospital': ['inform', 'request'], | |||
| # 'booking': ['book', 'inform', 'nobook', 'request'], | |||
| 'general': ['bye', 'greet', 'reqmore', 'welcome'], | |||
| } | |||
| all_acts = [] | |||
| for acts in dialog_acts.values(): | |||
| for act in acts: | |||
| if act not in all_acts: | |||
| all_acts.append(act) | |||
| dialog_act_params = { | |||
| 'inform': all_slots + ['choice', 'open'], | |||
| 'request': all_infslot + ['choice', 'price'], | |||
| 'nooffer': all_slots + ['choice'], | |||
| 'recommend': all_reqslot + ['choice', 'open'], | |||
| 'select': all_slots + ['choice'], | |||
| # 'book': ['time', 'people', 'stay', 'reference', 'day', 'name', 'choice'], | |||
| 'nobook': ['time', 'people', 'stay', 'reference', 'day', 'name', 'choice'], | |||
| 'offerbook': all_slots + ['choice'], | |||
| 'offerbooked': all_slots + ['choice'], | |||
| 'reqmore': [], | |||
| 'welcome': [], | |||
| 'bye': [], | |||
| 'greet': [], | |||
| } | |||
| dialog_act_all_slots = all_slots + ['choice', 'open'] | |||
| # special slot tokens in belief span | |||
| # no need of this, just covert slot to [slot] e.g. pricerange -> [pricerange] | |||
| slot_name_to_slot_token = {} | |||
| # special slot tokens in responses | |||
| # not use at the momoent | |||
| slot_name_to_value_token = { | |||
| # 'entrance fee': '[value_price]', | |||
| # 'pricerange': '[value_price]', | |||
| # 'arriveby': '[value_time]', | |||
| # 'leaveat': '[value_time]', | |||
| # 'departure': '[value_place]', | |||
| # 'destination': '[value_place]', | |||
| # 'stay': 'count', | |||
| # 'people': 'count' | |||
| } | |||
| # eos tokens definition | |||
| eos_tokens = { | |||
| 'user': '<eos_u>', | |||
| 'user_delex': '<eos_u>', | |||
| 'resp': '<eos_r>', | |||
| 'resp_gen': '<eos_r>', | |||
| 'pv_resp': '<eos_r>', | |||
| 'bspn': '<eos_b>', | |||
| 'bspn_gen': '<eos_b>', | |||
| 'pv_bspn': '<eos_b>', | |||
| 'bsdx': '<eos_b>', | |||
| 'bsdx_gen': '<eos_b>', | |||
| 'pv_bsdx': '<eos_b>', | |||
| 'qspn': '<eos_q>', | |||
| 'qspn_gen': '<eos_q>', | |||
| 'pv_qspn': '<eos_q>', | |||
| 'aspn': '<eos_a>', | |||
| 'aspn_gen': '<eos_a>', | |||
| 'pv_aspn': '<eos_a>', | |||
| 'dspn': '<eos_d>', | |||
| 'dspn_gen': '<eos_d>', | |||
| 'pv_dspn': '<eos_d>' | |||
| } | |||
| # sos tokens definition | |||
| sos_tokens = { | |||
| 'user': '<sos_u>', | |||
| 'user_delex': '<sos_u>', | |||
| 'resp': '<sos_r>', | |||
| 'resp_gen': '<sos_r>', | |||
| 'pv_resp': '<sos_r>', | |||
| 'bspn': '<sos_b>', | |||
| 'bspn_gen': '<sos_b>', | |||
| 'pv_bspn': '<sos_b>', | |||
| 'bsdx': '<sos_b>', | |||
| 'bsdx_gen': '<sos_b>', | |||
| 'pv_bsdx': '<sos_b>', | |||
| 'qspn': '<sos_q>', | |||
| 'qspn_gen': '<sos_q>', | |||
| 'pv_qspn': '<sos_q>', | |||
| 'aspn': '<sos_a>', | |||
| 'aspn_gen': '<sos_a>', | |||
| 'pv_aspn': '<sos_a>', | |||
| 'dspn': '<sos_d>', | |||
| 'dspn_gen': '<sos_d>', | |||
| 'pv_dspn': '<sos_d>' | |||
| } | |||
| # db tokens definition | |||
| db_tokens = [ | |||
| '<sos_db>', '<eos_db>', '[book_nores]', '[book_fail]', '[book_success]', | |||
| '[db_nores]', '[db_0]', '[db_1]', '[db_2]', '[db_3]' | |||
| ] | |||
| # understand tokens definition | |||
| def get_understand_tokens(prompt_num_for_understand): | |||
| understand_tokens = [] | |||
| for i in range(prompt_num_for_understand): | |||
| understand_tokens.append(f'<understand_{i}>') | |||
| return understand_tokens | |||
| # policy tokens definition | |||
| def get_policy_tokens(prompt_num_for_policy): | |||
| policy_tokens = [] | |||
| for i in range(prompt_num_for_policy): | |||
| policy_tokens.append(f'<policy_{i}>') | |||
| return policy_tokens | |||
| # all special tokens definition | |||
| def get_special_tokens(other_tokens): | |||
| special_tokens = ['<go_r>', '<go_b>', '<go_a>', '<go_d>', | |||
| '<eos_u>', '<eos_r>', '<eos_b>', '<eos_a>', '<eos_d>', '<eos_q>', | |||
| '<sos_u>', '<sos_r>', '<sos_b>', '<sos_a>', '<sos_d>', '<sos_q>'] \ | |||
| + db_tokens + other_tokens | |||
| return special_tokens | |||
| @@ -0,0 +1,6 @@ | |||
| def hierarchical_set_score(frame1, frame2): | |||
| # deal with empty frame | |||
| if not (frame1 and frame2): | |||
| return 0. | |||
| pass | |||
| return 0. | |||
| @@ -0,0 +1,180 @@ | |||
| import logging | |||
| from collections import OrderedDict | |||
| import json | |||
| import numpy as np | |||
| from . import ontology | |||
| def clean_replace(s, r, t, forward=True, backward=False): | |||
| def clean_replace_single(s, r, t, forward, backward, sidx=0): | |||
| # idx = s[sidx:].find(r) | |||
| idx = s.find(r) | |||
| if idx == -1: | |||
| return s, -1 | |||
| idx_r = idx + len(r) | |||
| if backward: | |||
| while idx > 0 and s[idx - 1]: | |||
| idx -= 1 | |||
| elif idx > 0 and s[idx - 1] != ' ': | |||
| return s, -1 | |||
| if forward: | |||
| while idx_r < len(s) and (s[idx_r].isalpha() | |||
| or s[idx_r].isdigit()): | |||
| idx_r += 1 | |||
| elif idx_r != len(s) and (s[idx_r].isalpha() or s[idx_r].isdigit()): | |||
| return s, -1 | |||
| return s[:idx] + t + s[idx_r:], idx_r | |||
| # source, replace, target = s, r, t | |||
| # count = 0 | |||
| sidx = 0 | |||
| while sidx != -1: | |||
| s, sidx = clean_replace_single(s, r, t, forward, backward, sidx) | |||
| # count += 1 | |||
| # print(s, sidx) | |||
| # if count == 20: | |||
| # print(source, '\n', replace, '\n', target) | |||
| # quit() | |||
| return s | |||
| def py2np(list): | |||
| return np.array(list) | |||
| def write_dict(fn, dic): | |||
| with open(fn, 'w') as f: | |||
| json.dump(dic, f, indent=2) | |||
| def f1_score(label_list, pred_list): | |||
| tp = len([t for t in pred_list if t in label_list]) | |||
| fp = max(0, len(pred_list) - tp) | |||
| fn = max(0, len(label_list) - tp) | |||
| precision = tp / (tp + fp + 1e-10) | |||
| recall = tp / (tp + fn + 1e-10) | |||
| f1 = 2 * precision * recall / (precision + recall + 1e-10) | |||
| return f1 | |||
| class MultiWOZVocab(object): | |||
| def __init__(self, vocab_size=0): | |||
| """ | |||
| vocab for multiwoz dataset | |||
| """ | |||
| self.vocab_size = vocab_size | |||
| self.vocab_size_oov = 0 # get after construction | |||
| self._idx2word = {} # word + oov | |||
| self._word2idx = {} # word | |||
| self._freq_dict = {} # word + oov | |||
| for w in [ | |||
| '[PAD]', '<go_r>', '[UNK]', '<go_b>', '<go_a>', '<eos_u>', | |||
| '<eos_r>', '<eos_b>', '<eos_a>', '<go_d>', '<eos_d>' | |||
| ]: | |||
| self._absolute_add_word(w) | |||
| def _absolute_add_word(self, w): | |||
| idx = len(self._idx2word) | |||
| self._idx2word[idx] = w | |||
| self._word2idx[w] = idx | |||
| def add_word(self, word): | |||
| if word not in self._freq_dict: | |||
| self._freq_dict[word] = 0 | |||
| self._freq_dict[word] += 1 | |||
| def has_word(self, word): | |||
| return self._freq_dict.get(word) | |||
| def _add_to_vocab(self, word): | |||
| if word not in self._word2idx: | |||
| idx = len(self._idx2word) | |||
| self._idx2word[idx] = word | |||
| self._word2idx[word] = idx | |||
| def construct(self): | |||
| l = sorted(self._freq_dict.keys(), key=lambda x: -self._freq_dict[x]) | |||
| print('Vocabulary size including oov: %d' % | |||
| (len(l) + len(self._idx2word))) | |||
| if len(l) + len(self._idx2word) < self.vocab_size: | |||
| logging.warning( | |||
| 'actual label set smaller than that configured: {}/{}'.format( | |||
| len(l) + len(self._idx2word), self.vocab_size)) | |||
| for word in ontology.all_domains + ['general']: | |||
| word = '[' + word + ']' | |||
| self._add_to_vocab(word) | |||
| for word in ontology.all_acts: | |||
| word = '[' + word + ']' | |||
| self._add_to_vocab(word) | |||
| for word in ontology.all_slots: | |||
| self._add_to_vocab(word) | |||
| for word in l: | |||
| if word.startswith('[value_') and word.endswith(']'): | |||
| self._add_to_vocab(word) | |||
| for word in l: | |||
| self._add_to_vocab(word) | |||
| self.vocab_size_oov = len(self._idx2word) | |||
| def load_vocab(self, vocab_path): | |||
| self._freq_dict = json.loads( | |||
| open(vocab_path + '.freq.json', 'r').read()) | |||
| self._word2idx = json.loads( | |||
| open(vocab_path + '.word2idx.json', 'r').read()) | |||
| self._idx2word = {} | |||
| for w, idx in self._word2idx.items(): | |||
| self._idx2word[idx] = w | |||
| self.vocab_size_oov = len(self._idx2word) | |||
| print('vocab file loaded from "' + vocab_path + '"') | |||
| print('Vocabulary size including oov: %d' % (self.vocab_size_oov)) | |||
| def save_vocab(self, vocab_path): | |||
| _freq_dict = OrderedDict( | |||
| sorted( | |||
| self._freq_dict.items(), key=lambda kv: kv[1], reverse=True)) | |||
| write_dict(vocab_path + '.word2idx.json', self._word2idx) | |||
| write_dict(vocab_path + '.freq.json', _freq_dict) | |||
| def encode(self, word, include_oov=True): | |||
| if include_oov: | |||
| if self._word2idx.get(word, None) is None: | |||
| raise ValueError( | |||
| 'Unknown word: %s. Vocabulary should include oovs here.' % | |||
| word) | |||
| return self._word2idx[word] | |||
| else: | |||
| word = '<unk>' if word not in self._word2idx else word | |||
| return self._word2idx[word] | |||
| def sentence_encode(self, word_list): | |||
| return [self.encode(_) for _ in word_list] | |||
| def oov_idx_map(self, idx): | |||
| return 2 if idx > self.vocab_size else idx | |||
| def sentence_oov_map(self, index_list): | |||
| return [self.oov_idx_map(_) for _ in index_list] | |||
| def decode(self, idx, indicate_oov=False): | |||
| if not self._idx2word.get(idx): | |||
| raise ValueError( | |||
| 'Error idx: %d. Vocabulary should include oovs here.' % idx) | |||
| if not indicate_oov or idx < self.vocab_size: | |||
| return self._idx2word[idx] | |||
| else: | |||
| return self._idx2word[idx] + '(o)' | |||
| def sentence_decode(self, index_list, eos=None, indicate_oov=False): | |||
| l = [self.decode(_, indicate_oov) for _ in index_list] | |||
| if not eos or eos not in l: | |||
| return ' '.join(l) | |||
| else: | |||
| idx = l.index(eos) | |||
| return ' '.join(l[:idx]) | |||
| def nl_decode(self, l, eos=None): | |||
| return [self.sentence_decode(_, eos) + '\n' for _ in l] | |||
| @@ -0,0 +1,2 @@ | |||
| spacy==2.3.5 | |||
| # python -m spacy download en_core_web_sm | |||
| @@ -0,0 +1,76 @@ | |||
| test_case = { | |||
| 'sng0073': { | |||
| 'goal': { | |||
| 'taxi': { | |||
| 'info': { | |||
| 'leaveat': '17:15', | |||
| 'destination': 'pizza hut fen ditton', | |||
| 'departure': "saint john's college" | |||
| }, | |||
| 'reqt': ['car', 'phone'], | |||
| 'fail_info': {} | |||
| } | |||
| }, | |||
| 'log': [{ | |||
| 'user': | |||
| "i would like a taxi from saint john 's college to pizza hut fen ditton .", | |||
| 'user_delex': | |||
| 'i would like a taxi from [value_departure] to [value_destination] .', | |||
| 'resp': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'sys': | |||
| 'what time do you want to leave and what time do you want to arrive by ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college", | |||
| 'cons_delex': '[taxi] destination departure', | |||
| 'sys_act': '[taxi] [request] leave arrive', | |||
| 'turn_num': 0, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'i want to leave after 17:15 .', | |||
| 'user_delex': 'i want to leave after [value_leave] .', | |||
| 'resp': | |||
| 'booking completed ! your taxi will be [value_car] contact number is [value_phone]', | |||
| 'sys': | |||
| 'booking completed ! your taxi will be blue honda contact number is 07218068540', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[taxi] [inform] car phone', | |||
| 'turn_num': 1, | |||
| 'turn_domain': '[taxi]' | |||
| }, { | |||
| 'user': 'thank you for all the help ! i appreciate it .', | |||
| 'user_delex': 'thank you for all the help ! i appreciate it .', | |||
| 'resp': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'sys': | |||
| 'you are welcome . is there anything else i can help you with today ?', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [reqmore]', | |||
| 'turn_num': 2, | |||
| 'turn_domain': '[general]' | |||
| }, { | |||
| 'user': 'no , i am all set . have a nice day . bye .', | |||
| 'user_delex': 'no , i am all set . have a nice day . bye .', | |||
| 'resp': 'you too ! thank you', | |||
| 'sys': 'you too ! thank you', | |||
| 'pointer': '0,0,0,0,0,0', | |||
| 'match': '', | |||
| 'constraint': | |||
| "[taxi] destination pizza hut fen ditton departure saint john 's college leave 17:15", | |||
| 'cons_delex': '[taxi] destination departure leave', | |||
| 'sys_act': '[general] [bye]', | |||
| 'turn_num': 3, | |||
| 'turn_domain': '[general]' | |||
| }] | |||
| } | |||
| } | |||
| @@ -37,30 +37,31 @@ dialog_case = [{ | |||
| }] | |||
| def merge(info, result): | |||
| return info | |||
| class DialogGenerationTest(unittest.TestCase): | |||
| def test_run(self): | |||
| for item in dialog_case: | |||
| q = item['user'] | |||
| a = item['sys'] | |||
| print('user:{}'.format(q)) | |||
| print('sys:{}'.format(a)) | |||
| # preprocessor = DialogGenerationPreprocessor() | |||
| # # data = DialogGenerationData() | |||
| # model = DialogGenerationModel(path, preprocessor.tokenizer) | |||
| # pipeline = DialogGenerationPipeline(model, preprocessor) | |||
| # | |||
| # history_dialog = [] | |||
| # for item in dialog_case: | |||
| # user_question = item['user'] | |||
| # print('user: {}'.format(user_question)) | |||
| # | |||
| # pipeline(user_question) | |||
| # | |||
| # sys_answer, history_dialog = pipeline() | |||
| # | |||
| # print('sys : {}'.format(sys_answer)) | |||
| modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||
| preprocessor = DialogGenerationPreprocessor() | |||
| model = DialogGenerationModel( | |||
| model_dir=modeldir, preprocessor.tokenizer) | |||
| pipeline = DialogGenerationPipeline(model, preprocessor) | |||
| history_dialog = {} | |||
| for step in range(0, len(dialog_case)): | |||
| user_question = dialog_case[step]['user'] | |||
| print('user: {}'.format(user_question)) | |||
| history_dialog_info = merge(history_dialog_info, | |||
| result) if step > 0 else {} | |||
| result = pipeline(user_question, history=history_dialog_info) | |||
| print('sys : {}'.format(result['pred_answer'])) | |||
| if __name__ == '__main__': | |||
| @@ -0,0 +1,25 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| import unittest | |||
| from tests.case.nlp.dialog_generation_case import test_case | |||
| from maas_lib.preprocessors import DialogGenerationPreprocessor | |||
| from maas_lib.utils.constant import Fields, InputFields | |||
| from maas_lib.utils.logger import get_logger | |||
| logger = get_logger() | |||
| class DialogGenerationPreprocessorTest(unittest.TestCase): | |||
| def test_tokenize(self): | |||
| modeldir = '/Users/yangliu/Desktop/space-dialog-generation' | |||
| processor = DialogGenerationPreprocessor(model_dir=modeldir) | |||
| for item in test_case['sng0073']['log']: | |||
| print(processor(item['user'])) | |||
| if __name__ == '__main__': | |||
| unittest.main() | |||