|
|
|
@@ -0,0 +1,48 @@ |
|
|
|
from typing import Any, Dict, Optional |
|
|
|
|
|
|
|
from maas_lib.utils.constant import Tasks |
|
|
|
from ...base import Model, Tensor |
|
|
|
from ...builder import MODELS |
|
|
|
|
|
|
|
__all__ = ['DialogGenerationModel'] |
|
|
|
|
|
|
|
|
|
|
|
@MODELS.register_module(Tasks.dialog_generation, module_name=r'space') |
|
|
|
class DialogGenerationModel(Model): |
|
|
|
|
|
|
|
def __init__(self, model_dir: str, *args, **kwargs): |
|
|
|
"""initialize the test generation model from the `model_dir` path. |
|
|
|
|
|
|
|
Args: |
|
|
|
model_dir (str): the model path. |
|
|
|
model_cls (Optional[Any], optional): model loader, if None, use the |
|
|
|
default loader to load model weights, by default None. |
|
|
|
""" |
|
|
|
|
|
|
|
super().__init__(model_dir, *args, **kwargs) |
|
|
|
self.model_dir = model_dir |
|
|
|
pass |
|
|
|
|
|
|
|
def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: |
|
|
|
"""return the result by the model |
|
|
|
|
|
|
|
Args: |
|
|
|
input (Dict[str, Any]): the preprocessed data |
|
|
|
|
|
|
|
Returns: |
|
|
|
Dict[str, np.ndarray]: results |
|
|
|
Example: |
|
|
|
{ |
|
|
|
'predictions': array([1]), # lable 0-negative 1-positive |
|
|
|
'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), |
|
|
|
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value |
|
|
|
} |
|
|
|
""" |
|
|
|
from numpy import array, float32 |
|
|
|
|
|
|
|
return { |
|
|
|
'predictions': array([1]), # lable 0-negative 1-positive |
|
|
|
'probabilities': array([[0.11491239, 0.8850876]], dtype=float32), |
|
|
|
'logits': array([[-0.53860897, 1.5029076]], |
|
|
|
dtype=float32) # true value |
|
|
|
} |