You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test25.py 5.7 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. backbone=dict(
  5. type='ResNeSt',
  6. stem_channels=128,
  7. depth=101,
  8. radix=2,
  9. reduction_factor=4,
  10. avg_down_stride=True,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=norm_cfg,
  15. norm_eval=False,
  16. style='pytorch',
  17. init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')),
  18. roi_head=dict(
  19. bbox_head=[
  20. dict(
  21. type='Shared4Conv1FCBBoxHead',
  22. in_channels=256,
  23. conv_out_channels=256,
  24. fc_out_channels=1024,
  25. norm_cfg=norm_cfg,
  26. roi_feat_size=7,
  27. num_classes=11,
  28. bbox_coder=dict(
  29. type='DeltaXYWHBBoxCoder',
  30. target_means=[0., 0., 0., 0.],
  31. target_stds=[0.1, 0.1, 0.2, 0.2]),
  32. reg_class_agnostic=True,
  33. loss_cls=dict(
  34. type='CrossEntropyLoss',
  35. use_sigmoid=False,
  36. loss_weight=1.0),
  37. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  38. loss_weight=1.0)),
  39. dict(
  40. type='Shared4Conv1FCBBoxHead',
  41. in_channels=256,
  42. conv_out_channels=256,
  43. fc_out_channels=1024,
  44. norm_cfg=norm_cfg,
  45. roi_feat_size=7,
  46. num_classes=11,
  47. bbox_coder=dict(
  48. type='DeltaXYWHBBoxCoder',
  49. target_means=[0., 0., 0., 0.],
  50. target_stds=[0.05, 0.05, 0.1, 0.1]),
  51. reg_class_agnostic=True,
  52. loss_cls=dict(
  53. type='CrossEntropyLoss',
  54. use_sigmoid=False,
  55. loss_weight=1.0),
  56. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  57. loss_weight=1.0)),
  58. dict(
  59. type='Shared4Conv1FCBBoxHead',
  60. in_channels=256,
  61. conv_out_channels=256,
  62. fc_out_channels=1024,
  63. norm_cfg=norm_cfg,
  64. roi_feat_size=7,
  65. num_classes=11,
  66. bbox_coder=dict(
  67. type='DeltaXYWHBBoxCoder',
  68. target_means=[0., 0., 0., 0.],
  69. target_stds=[0.033, 0.033, 0.067, 0.067]),
  70. reg_class_agnostic=True,
  71. loss_cls=dict(
  72. type='CrossEntropyLoss',
  73. use_sigmoid=False,
  74. loss_weight=1.0),
  75. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  76. ], ))
  77. # # use ResNeSt img_norm
  78. img_norm_cfg = dict(
  79. mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True)
  80. dataset_type = 'CocoDataset'
  81. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  82. train_pipeline = [
  83. dict(type='LoadImageFromFile'),
  84. dict(type='LoadAnnotations', with_bbox=True),
  85. dict(
  86. type='Resize',
  87. img_scale=[(400, 400), (500, 500)],
  88. multiscale_mode='value',
  89. keep_ratio=True),
  90. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  91. dict(type='BrightnessTransform', level=5, prob=0.5),
  92. dict(type='ContrastTransform', level=5, prob=0.5),
  93. dict(type='RandomShift', shift_ratio=0.5),
  94. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  95. dict(type='Normalize', **img_norm_cfg),
  96. dict(type='Pad', size_divisor=32),
  97. dict(type='DefaultFormatBundle'),
  98. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  99. ]
  100. test_pipeline = [
  101. dict(type='LoadImageFromFile'),
  102. dict(
  103. type='MultiScaleFlipAug',
  104. img_scale=[(400, 400)],
  105. flip=False,
  106. transforms=[
  107. dict(type='Resize', keep_ratio=True),
  108. dict(type='RandomFlip'),
  109. dict(type='Normalize', **img_norm_cfg),
  110. dict(type='Pad', size_divisor=32),
  111. dict(type='ImageToTensor', keys=['img']),
  112. dict(type='Collect', keys=['img']),
  113. ])
  114. ]
  115. data = dict(
  116. samples_per_gpu=8,
  117. workers_per_gpu=8,
  118. train=dict(
  119. type=dataset_type,
  120. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/images/',
  121. classes=classes,
  122. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/annotations/train.json',
  123. pipeline=train_pipeline),
  124. val=dict(
  125. type=dataset_type,
  126. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  127. classes=classes,
  128. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  129. pipeline=test_pipeline),
  130. test=dict(
  131. type=dataset_type,
  132. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  133. classes=classes,
  134. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  135. pipeline=test_pipeline))
  136. # optimizer
  137. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  138. optimizer_config = dict(grad_clip=None)
  139. # learning policy
  140. lr_config = dict(
  141. policy='CosineAnnealing',
  142. warmup='linear',
  143. warmup_iters=5000,
  144. warmup_ratio=1.0 / 10,
  145. min_lr_ratio=1e-5)
  146. runner = dict(type='EpochBasedRunner', max_epochs=40)
  147. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)