_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( backbone=dict( type='ResNeSt', stem_channels=128, depth=101, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=11, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=11, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=11, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], )) # # use ResNeSt img_norm img_norm_cfg = dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], to_rgb=True) dataset_type = 'CocoDataset' classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu') train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(400, 400), (500, 500)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']), dict(type='BrightnessTransform', level=5, prob=0.5), dict(type='ContrastTransform', level=5, prob=0.5), dict(type='RandomShift', shift_ratio=0.5), dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[(400, 400)], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=8, train=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/images/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/annotations/train.json', pipeline=train_pipeline), val=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json', pipeline=test_pipeline), test=dict( type=dataset_type, img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/', classes=classes, ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='CosineAnnealing', warmup='linear', warmup_iters=5000, warmup_ratio=1.0 / 10, min_lr_ratio=1e-5) runner = dict(type='EpochBasedRunner', max_epochs=40) evaluation = dict(interval=5, metric='bbox')