Browse Source

Merge remote-tracking branch 'origin/add-avif-serialization-for-monochrome' into rescale-vggt-to-meter

rescale-vggt-to-meter
haixuanTao 7 months ago
parent
commit
5924e8743b
33 changed files with 506 additions and 171 deletions
  1. +2
    -2
      Cargo.lock
  2. +1
    -1
      apis/c++/node/src/lib.rs
  3. +1
    -1
      apis/c/node/src/lib.rs
  4. +7
    -2
      apis/python/operator/src/lib.rs
  5. +8
    -1
      apis/rust/node/src/event_stream/event.rs
  6. +3
    -9
      apis/rust/node/src/event_stream/mod.rs
  7. +7
    -4
      apis/rust/node/src/event_stream/thread.rs
  8. +1
    -1
      apis/rust/node/src/lib.rs
  9. +1
    -1
      binaries/daemon/src/spawn.rs
  10. +2
    -2
      binaries/runtime/src/lib.rs
  11. +1
    -1
      binaries/runtime/src/operator/shared_lib.rs
  12. +1
    -1
      examples/multiple-daemons/node/src/main.rs
  13. +2
    -2
      examples/multiple-daemons/sink/src/main.rs
  14. +3
    -3
      examples/openai-server/dataflow-rust.yml
  15. +59
    -1
      examples/openai-server/openai_api_client.py
  16. +16
    -0
      examples/openai-server/qwenvl.yml
  17. +1
    -1
      examples/rust-dataflow/node/src/main.rs
  18. +2
    -2
      examples/rust-dataflow/sink-dynamic/src/main.rs
  19. +2
    -2
      examples/rust-dataflow/sink/src/main.rs
  20. +1
    -1
      examples/rust-dataflow/status-node/src/main.rs
  21. +1
    -1
      examples/rust-ros2-dataflow/node/src/main.rs
  22. +54
    -0
      examples/vggt/depth-to-avif.yaml
  23. +34
    -0
      examples/vggt/image_saver.py
  24. +14
    -0
      libraries/arrow-convert/src/into_impls.rs
  25. +2
    -0
      node-hub/dora-keyboard/dora_keyboard/main.py
  26. +1
    -0
      node-hub/dora-microphone/dora_microphone/main.py
  27. +3
    -3
      node-hub/dora-mistral-rs/src/main.rs
  28. +112
    -31
      node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py
  29. +1
    -1
      node-hub/dora-rav1e/Cargo.toml
  30. +23
    -2
      node-hub/dora-rav1e/src/lib.rs
  31. +40
    -25
      node-hub/dora-vggt/dora_vggt/main.py
  32. +56
    -70
      node-hub/openai-proxy-server/src/main.rs
  33. +44
    -0
      node-hub/openai-proxy-server/src/message.rs

+ 2
- 2
Cargo.lock View File

@@ -1165,9 +1165,9 @@ dependencies = [

[[package]]
name = "avif-serialize"
version = "0.8.3"
version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98922d6a4cfbcb08820c69d8eeccc05bb1f29bfa06b4f5b1dbfe9a868bd7608e"
checksum = "19135c0c7a60bfee564dbe44ab5ce0557c6bf3884e5291a50be76a15640c4fbd"
dependencies = [
"arrayvec",
]


+ 1
- 1
apis/c++/node/src/lib.rs View File

@@ -144,7 +144,7 @@ pub struct DoraEvent(Option<Event>);
fn event_type(event: &DoraEvent) -> ffi::DoraEventType {
match &event.0 {
Some(event) => match event {
Event::Stop => ffi::DoraEventType::Stop,
Event::Stop(_) => ffi::DoraEventType::Stop,
Event::Input { .. } => ffi::DoraEventType::Input,
Event::InputClosed { .. } => ffi::DoraEventType::InputClosed,
Event::Error(_) => ffi::DoraEventType::Error,


+ 1
- 1
apis/c/node/src/lib.rs View File

@@ -91,7 +91,7 @@ pub unsafe extern "C" fn dora_next_event(context: *mut c_void) -> *mut c_void {
pub unsafe extern "C" fn read_dora_event_type(event: *const ()) -> EventType {
let event: &Event = unsafe { &*event.cast() };
match event {
Event::Stop => EventType::Stop,
Event::Stop(_) => EventType::Stop,
Event::Input { .. } => EventType::Input,
Event::InputClosed { .. } => EventType::InputClosed,
Event::Error(_) => EventType::Error,


+ 7
- 2
apis/python/operator/src/lib.rs View File

@@ -6,7 +6,7 @@ use std::{
use arrow::pyarrow::ToPyArrow;
use dora_node_api::{
merged::{MergeExternalSend, MergedEvent},
DoraNode, Event, EventStream, Metadata, MetadataParameters, Parameter,
DoraNode, Event, EventStream, Metadata, MetadataParameters, Parameter, StopCause,
};
use eyre::{Context, Result};
use futures::{Stream, StreamExt};
@@ -146,7 +146,7 @@ impl PyEvent {

fn ty(event: &Event) -> &str {
match event {
Event::Stop => "STOP",
Event::Stop(_) => "STOP",
Event::Input { .. } => "INPUT",
Event::InputClosed { .. } => "INPUT_CLOSED",
Event::Error(_) => "ERROR",
@@ -158,6 +158,11 @@ impl PyEvent {
match event {
Event::Input { id, .. } => Some(id),
Event::InputClosed { id } => Some(id),
Event::Stop(cause) => match cause {
StopCause::Manual => Some("MANUAL"),
StopCause::AllInputsClosed => Some("ALL_INPUTS_CLOSED"),
&_ => None,
},
_ => None,
}
}


+ 8
- 1
apis/rust/node/src/event_stream/event.rs View File

@@ -10,7 +10,7 @@ use shared_memory_extended::{Shmem, ShmemConf};
#[derive(Debug)]
#[non_exhaustive]
pub enum Event {
Stop,
Stop(StopCause),
Reload {
operator_id: Option<OperatorId>,
},
@@ -25,6 +25,13 @@ pub enum Event {
Error(String),
}

#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum StopCause {
Manual,
AllInputsClosed,
}

pub enum RawData {
Empty,
Vec(AVec<u8, ConstAlign<128>>),


+ 3
- 9
apis/rust/node/src/event_stream/mod.rs View File

@@ -11,7 +11,7 @@ use dora_message::{
node_to_daemon::{DaemonRequest, Timestamped},
DataflowId,
};
pub use event::{Event, MappedInputData, RawData};
pub use event::{Event, MappedInputData, RawData, StopCause};
use futures::{
future::{select, Either},
Stream, StreamExt,
@@ -199,7 +199,7 @@ impl EventStream {
fn convert_event_item(item: EventItem) -> Event {
match item {
EventItem::NodeEvent { event, ack_channel } => match event {
NodeEvent::Stop => Event::Stop,
NodeEvent::Stop => Event::Stop(event::StopCause::Manual),
NodeEvent::Reload { operator_id } => Event::Reload { operator_id },
NodeEvent::InputClosed { id } => Event::InputClosed { id },
NodeEvent::Input { id, metadata, data } => {
@@ -234,13 +234,7 @@ impl EventStream {
Err(err) => Event::Error(format!("{err:?}")),
}
}
NodeEvent::AllInputsClosed => {
let err = eyre!(
"received `AllInputsClosed` event, which should be handled by background task"
);
tracing::error!("{err:?}");
Event::Error(err.wrap_err("internal error").to_string())
}
NodeEvent::AllInputsClosed => Event::Stop(event::StopCause::AllInputsClosed),
},

EventItem::FatalError(err) => {


+ 7
- 4
apis/rust/node/src/event_stream/thread.rs View File

@@ -92,6 +92,7 @@ fn event_stream_loop(
clock: Arc<uhlc::HLC>,
) {
let mut tx = Some(tx);
let mut close_tx = false;
let mut pending_drop_tokens: Vec<(DropToken, flume::Receiver<()>, Instant, u64)> = Vec::new();
let mut drop_tokens = Vec::new();

@@ -135,10 +136,8 @@ fn event_stream_loop(
data: Some(data), ..
} => data.drop_token(),
NodeEvent::AllInputsClosed => {
// close the event stream
tx = None;
// skip this internal event
continue;
close_tx = true;
None
}
_ => None,
};
@@ -166,6 +165,10 @@ fn event_stream_loop(
} else {
tracing::warn!("dropping event because event `tx` was already closed: `{inner:?}`");
}

if close_tx {
tx = None;
};
}
};
if let Err(err) = result {


+ 1
- 1
apis/rust/node/src/lib.rs View File

@@ -20,7 +20,7 @@ pub use dora_message::{
metadata::{Metadata, MetadataParameters, Parameter},
DataflowId,
};
pub use event_stream::{merged, Event, EventStream, MappedInputData, RawData};
pub use event_stream::{merged, Event, EventStream, MappedInputData, RawData, StopCause};
pub use flume::Receiver;
pub use node::{arrow_utils, DataSample, DoraNode, ZERO_COPY_THRESHOLD};



+ 1
- 1
binaries/daemon/src/spawn.rs View File

@@ -540,7 +540,7 @@ pub async fn spawn_node(
// If log is an output, we're sending the logs to the dataflow
if let Some(stdout_output_name) = &send_stdout_to {
// Convert logs to DataMessage
let array = message.into_arrow();
let array = message.as_str().into_arrow();

let array: ArrayData = array.into();
let total_len = required_data_size(&array);


+ 2
- 2
binaries/runtime/src/lib.rs View File

@@ -232,10 +232,10 @@ async fn run(
}
}
}
RuntimeEvent::Event(Event::Stop) => {
RuntimeEvent::Event(Event::Stop(cause)) => {
// forward stop event to all operators and close the event channels
for (_, channel) in operator_channels.drain() {
let _ = channel.send_async(Event::Stop).await;
let _ = channel.send_async(Event::Stop(cause.clone())).await;
}
}
RuntimeEvent::Event(Event::Reload {


+ 1
- 1
binaries/runtime/src/operator/shared_lib.rs View File

@@ -182,7 +182,7 @@ impl<'lib> SharedLibraryOperator<'lib> {
}

let mut operator_event = match event {
Event::Stop => dora_operator_api_types::RawEvent {
Event::Stop(_) => dora_operator_api_types::RawEvent {
input: None,
input_closed: None,
stop: true,


+ 1
- 1
examples/multiple-daemons/node/src/main.rs View File

@@ -26,7 +26,7 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"),
}
}


+ 2
- 2
examples/multiple-daemons/sink/src/main.rs View File

@@ -24,8 +24,8 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
}
Event::InputClosed { id } => {
println!("Input `{id}` was closed");


+ 3
- 3
examples/openai-server/dataflow-rust.yml View File

@@ -3,14 +3,14 @@ nodes:
build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server
outputs:
- chat_completion_request
- text
inputs:
completion_reply: dora-echo/echo
text: dora-echo/echo

- id: dora-echo
build: pip install -e ../../node-hub/dora-echo
path: dora-echo
inputs:
echo: dora-openai-server/chat_completion_request
echo: dora-openai-server/text
outputs:
- echo

+ 59
- 1
examples/openai-server/openai_api_client.py View File

@@ -32,11 +32,69 @@ def test_chat_completion(user_input):
print(f"Error in chat completion: {e}")


def test_chat_completion_image_url(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


def test_chat_completion_image_base64(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


if __name__ == "__main__":
print("Testing API endpoints...")
test_list_models()
# test_list_models()
print("\n" + "=" * 50 + "\n")

chat_input = input("Enter a message for chat completion: ")
test_chat_completion(chat_input)

print("\n" + "=" * 50 + "\n")

test_chat_completion_image_url(chat_input)
print("\n" + "=" * 50 + "\n")
test_chat_completion_image_base64(chat_input)
print("\n" + "=" * 50 + "\n")

+ 16
- 0
examples/openai-server/qwenvl.yml View File

@@ -0,0 +1,16 @@
nodes:
- id: dora-openai-server
build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server
outputs:
- text
inputs:
text: dora-qwen2.5-vl/text

- id: dora-qwen2.5-vl
build: pip install -e ../../node-hub/dora-qwen2-5-vl
path: dora-qwen2-5-vl
inputs:
text: dora-openai-server/text
outputs:
- text

+ 1
- 1
examples/rust-dataflow/node/src/main.rs View File

@@ -26,7 +26,7 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"),
}
}


+ 2
- 2
examples/rust-dataflow/sink-dynamic/src/main.rs View File

@@ -25,8 +25,8 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
}
Event::InputClosed { id } => {
println!("Input `{id}` was closed");


+ 2
- 2
examples/rust-dataflow/sink/src/main.rs View File

@@ -24,8 +24,8 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
}
Event::InputClosed { id } => {
println!("Input `{id}` was closed");


+ 1
- 1
examples/rust-dataflow/status-node/src/main.rs View File

@@ -29,7 +29,7 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("ignoring unexpected input {other}"),
},
Event::Stop => {}
Event::Stop(_) => {}
Event::InputClosed { id } => {
println!("input `{id}` was closed");
if *id == "random" {


+ 1
- 1
examples/rust-ros2-dataflow/node/src/main.rs View File

@@ -119,7 +119,7 @@ fn main() -> eyre::Result<()> {
}
other => eprintln!("Ignoring unexpected input `{other}`"),
},
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"),
},
MergedEvent::External(pose) => {


+ 54
- 0
examples/vggt/depth-to-avif.yaml View File

@@ -0,0 +1,54 @@
nodes:
- id: camera
build: pip install opencv-video-capture
path: opencv-video-capture
inputs:
tick: dora/timer/millis/100
outputs:
- image
env:
CAPTURE_PATH: 1

- id: dora-vggt
build: pip install -e ../../node-hub/dora-vggt
path: dora-vggt
inputs:
image: camera/image
outputs:
- depth
- image
env:
DEPTH_ENCODING: mono16

- id: rav1e-depth
path: dora-rav1e
build: cargo build -p dora-rav1e --release
inputs:
depth: dora-vggt/depth
outputs:
- depth
env:
ENCODING: avif

- id: rav1e-image
path: dora-rav1e
build: cargo build -p dora-rav1e --release
inputs:
image: dora-vggt/image
outputs:
- image
env:
ENCODING: avif

- id: bench
path: image_saver.py
inputs:
camera_depth: rav1e-image/image
vggt_depth: rav1e-depth/depth

- id: plot
build: pip install dora-rerun
path: dora-rerun
inputs:
camera/image: dora-vggt/image
camera/depth: dora-vggt/depth

+ 34
- 0
examples/vggt/image_saver.py View File

@@ -0,0 +1,34 @@
from dora import Node

node = Node()

index_dict = {}
i = 0

LEAD_TOPIC = "vggt_depth"

for event in node:
if event["type"] == "INPUT":
if LEAD_TOPIC in event["id"]:
storage = event["value"]
metadata = event["metadata"]
encoding = metadata["encoding"]
width = metadata["width"]
height = metadata["height"]

# Save to file
filename = f"out/{event['id']}_{i}.{encoding}"
with open(filename, "wb") as f:
f.write(storage.to_numpy())
for key, value in index_dict.items():
filename = f"out/{key}_{i}.{value['metadata']['encoding']}"
with open(filename, "wb") as f:
f.write(value["value"])
i += 1
else:
# Store the event in the index dictionary
index_dict[event["id"]] = {
"type": event["type"],
"value": event["value"].to_numpy(),
"metadata": event["metadata"],
}

+ 14
- 0
libraries/arrow-convert/src/into_impls.rs View File

@@ -81,6 +81,20 @@ impl IntoArrow for NaiveTime {
}
}

impl IntoArrow for String {
type A = StringArray;
fn into_arrow(self) -> Self::A {
std::iter::once(Some(self)).collect()
}
}

impl IntoArrow for Vec<String> {
type A = StringArray;
fn into_arrow(self) -> Self::A {
StringArray::from(self)
}
}

impl IntoArrow for NaiveDateTime {
type A = arrow::array::TimestampNanosecondArray;
fn into_arrow(self) -> Self::A {


+ 2
- 0
node-hub/dora-keyboard/dora_keyboard/main.py View File

@@ -11,6 +11,8 @@ def main():
node = Node()

always_none = node.next(timeout=0.001) is None
always_none = node.next(timeout=0.001) is None
print("Always None:", always_none)
with keyboard.Events() as events:
while True:
if not always_none:


+ 1
- 0
node-hub/dora-microphone/dora_microphone/main.py View File

@@ -19,6 +19,7 @@ def main():
start_recording_time = tm.time()
node = Node()

always_none = node.next(timeout=0.001) is None
always_none = node.next(timeout=0.001) is None
finished = False



+ 3
- 3
node-hub/dora-mistral-rs/src/main.rs View File

@@ -41,13 +41,13 @@ async fn main() -> eyre::Result<()> {
node.send_output(
mistral_output.clone(),
metadata.parameters,
output.into_arrow(),
output.as_str().into_arrow(),
)?;
}
other => eprintln!("Received input `{other}`"),
},
Event::Stop => {
println!("Received manual stop")
Event::Stop(_) => {
println!("Received command");
}
Event::InputClosed { id } => {
println!("input `{id}` was closed");


+ 112
- 31
node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py View File

@@ -62,29 +62,118 @@ if ADAPTER_PATH != "":
processor = AutoProcessor.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)


def generate(frames: dict, question, history, past_key_values=None, image_id=None):
def generate(
frames: dict, texts: list[str], history, past_key_values=None, image_id=None
):
"""Generate the response to the question given the image using Qwen2 model."""
if image_id is not None:
images = [frames[image_id]]
else:
images = list(frames.values())
messages = [
{
"role": "user",
"content": [

messages = []

for text in texts:
if text.startswith("<|system|>\n"):
messages.append(
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
"role": "system",
"content": [
{"type": "text", "text": text.replace("<|system|>\n", "")},
],
}
for image in images
]
+ [
{"type": "text", "text": question},
],
},
]
)
elif text.startswith("<|assistant|>\n"):
messages.append(
{
"role": "assistant",
"content": [
{"type": "text", "text": text.replace("<|assistant|>\n", "")},
],
}
)
elif text.startswith("<|tool|>\n"):
messages.append(
{
"role": "tool",
"content": [
{"type": "text", "text": text.replace("<|tool|>\n", "")},
],
}
)
elif text.startswith("<|user|>\n<|im_start|>\n"):
messages.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": text.replace("<|user|>\n<|im_start|>\n", ""),
},
],
}
)
elif text.startswith("<|user|>\n<|vision_start|>\n"):
# Handle the case where the text starts with <|user|>\n<|vision_start|>
image_url = text.replace("<|user|>\n<|vision_start|>\n", "")

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"].append(
{
"type": "image",
"image": image_url,
}
)
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image_url,
},
],
}
)
else:
messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": text},
],
}
)

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"] += [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
]
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
],
}
)

tmp_history = history + messages
# Preparation for inference
text = processor.apply_chat_template(
@@ -120,19 +209,13 @@ def generate(frames: dict, question, history, past_key_values=None, image_id=Non
clean_up_tokenization_spaces=False,
)
if HISTORY:
history += [
{
"role": "user",
"content": [
{"type": "text", "text": question},
],
},
history = tmp_history + [
{
"role": "assistant",
"content": [
{"type": "text", "text": output_text[0]},
],
},
}
]

return output_text[0], history, past_key_values
@@ -207,24 +290,22 @@ def main():

elif "text" in event_id:
if len(event["value"]) > 0:
text = event["value"][0].as_py()
texts = event["value"].to_pylist()
image_id = event["metadata"].get("image_id", None)
else:
text = cached_text
words = text.split()
texts = cached_text
words = texts[-1].split()
if len(ACTIVATION_WORDS) > 0 and all(
word not in ACTIVATION_WORDS for word in words
):
continue

cached_text = text
cached_text = texts

if len(frames.keys()) == 0:
continue
# set the max number of tiles in `max_num`
response, history, past_key_values = generate(
frames,
text,
texts,
history,
past_key_values,
image_id,


+ 1
- 1
node-hub/dora-rav1e/Cargo.toml View File

@@ -25,7 +25,7 @@ pyo3 = { workspace = true, features = [
"eyre",
"generate-import-lib",
], optional = true }
avif-serialize = "0.8.3"
avif-serialize = "0.8.4"


[lib]


+ 23
- 2
node-hub/dora-rav1e/src/lib.rs View File

@@ -336,7 +336,7 @@ pub fn lib_main() -> Result<()> {
if let Some(buffer) = data.as_primitive_opt::<UInt16Type>() {
let mut buffer = buffer.values().to_vec();
if std::env::var("FILL_ZEROS")
.map(|s| s != "false")
.map(|s| s.to_lowercase() != "false")
.unwrap_or(true)
{
fill_zeros_toward_center_y_plane_in_place(&mut buffer, width, height);
@@ -370,7 +370,28 @@ pub fn lib_main() -> Result<()> {
let data = pkt.data;
match output_encoding.as_str() {
"avif" => {
warn!("avif encoding not supported for mono16");
metadata.parameters.insert(
"encoding".to_string(),
Parameter::String("avif".to_string()),
);

let data = avif_serialize::Aviffy::new()
.full_color_range(false)
.set_seq_profile(0)
.set_monochrome(true)
.to_vec(
&data,
None,
enc.width as u32,
enc.height as u32,
enc.bit_depth as u8,
);

let arrow = data.into_arrow();

node.send_output(id, metadata.parameters.clone(), arrow)
.context("could not send output")
.unwrap();
}
_ => {
metadata.parameters.insert(


+ 40
- 25
node-hub/dora-vggt/dora_vggt/main.py View File

@@ -1,8 +1,9 @@
"""TODO: Add docstring."""

import io
from collections import deque as Deque
import os
from collections import deque as Deque

import cv2
import numpy as np
import pyarrow as pa
@@ -10,22 +11,24 @@ import torch
from dora import Node
from PIL import Image
from vggt.models.vggt import VGGT
from vggt.utils.geometry import unproject_depth_map_to_point_map
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.utils.geometry import unproject_depth_map_to_point_map

CAMERA_HEIGHT = os.getenv("CAMERA_HEIGHT", "0.01")

# bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+)
dtype = torch.bfloat16

# Check if cuda is available and set the device accordingly
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize the model and load the pretrained weights.
# This will automatically download the model weights the first time it's run, which may take a while.
model = VGGT.from_pretrained("facebook/VGGT-1B").to("cuda")
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
model.eval()



DEPTH_ENCODING = os.environ.get("DEPTH_ENCODING", "float64")


def main():
@@ -35,7 +38,6 @@ def main():

for event in node:
if event["type"] == "INPUT":

if "image" in event["id"]:
storage = event["value"]
metadata = event["metadata"]
@@ -83,7 +85,7 @@ def main():
raw_images.append(buffer)

with torch.no_grad():
images = load_and_preprocess_images(raw_images).to("cuda")
images = load_and_preprocess_images(raw_images).to(device)

images = images[None] # add batch dimension
aggregated_tokens_list, ps_idx = model.aggregator(images)
@@ -99,25 +101,34 @@ def main():
aggregated_tokens_list, images, ps_idx
)

# Construct 3D Points from Depth Maps and Cameras
# which usually leads to more accurate 3D points than point map branch
point_map_by_unprojection = unproject_depth_map_to_point_map(depth_map.squeeze(0),
extrinsic.squeeze(0),
intrinsic.squeeze(0))
point_map_by_unprojection = unproject_depth_map_to_point_map(
depth_map.squeeze(0), extrinsic.squeeze(0), intrinsic.squeeze(0)
)

# Get the last quartile of the 2nd axis
z_value = point_map_by_unprojection[0, :, :, 2]
z_first_quartile = np.quantile(z_value, 0.15)
scale_factor = float(CAMERA_HEIGHT) / z_first_quartile
print(f"Scale factor: {scale_factor}, with height: {CAMERA_HEIGHT} and max depth: {point_map_by_unprojection[0, :, :, 2].min()}")
print(f" 0. all min and max depth values: {point_map_by_unprojection[0, :, :, 0].min()} / {point_map_by_unprojection[0, :, :, 0].max()}")
print(f" 1. all min and max depth values: {point_map_by_unprojection[0, :, :, 1].min()} / {point_map_by_unprojection[0, :, :, 1].max()}")
print(f" 2. all min and max depth values: {point_map_by_unprojection[0, :, :, 2].min()} / {point_map_by_unprojection[0, :, :, 2].max()}")
print(
f"Scale factor: {scale_factor}, with height: {CAMERA_HEIGHT} and max depth: {point_map_by_unprojection[0, :, :, 2].min()}"
)
print(
f" 0. all min and max depth values: {point_map_by_unprojection[0, :, :, 0].min()} / {point_map_by_unprojection[0, :, :, 0].max()}"
)
print(
f" 1. all min and max depth values: {point_map_by_unprojection[0, :, :, 1].min()} / {point_map_by_unprojection[0, :, :, 1].max()}"
)
print(
f" 2. all min and max depth values: {point_map_by_unprojection[0, :, :, 2].min()} / {point_map_by_unprojection[0, :, :, 2].max()}"
)
print(f" first quartile of z values: {z_first_quartile}")
depth_map[depth_conf < 1.0] = 0.0 # Set low confidence pixels to 0
depth_map = depth_map * scale_factor # Scale depth map to the desired height
depth_map = (
depth_map * scale_factor
) # Scale depth map to the desired height
depth_map = depth_map.to(torch.float64)

intrinsic = intrinsic[-1][-1]
@@ -127,20 +138,24 @@ def main():
r_1 = intrinsic[1, 2]
depth_map = depth_map[-1][-1].cpu().numpy()
# Warning: Make sure to add my_output_id and my_input_id within the dataflow.
if DEPTH_ENCODING == "mono16":
depth_map = (depth_map * 1000).astype(np.uint16)

node.send_output(
output_id="depth",
data=pa.array(depth_map.ravel()),
metadata={
"width": depth_map.shape[1],
"height": depth_map.shape[0],
"focal": [
int(f_0),
int(f_1),
],
"resolution": [
int(r_0),
int(r_1),
],
"encoding": DEPTH_ENCODING,
"focal": [
int(f_0),
int(f_1),
],
"resolution": [
int(r_0),
int(r_1),
],
},
)



+ 56
- 70
node-hub/openai-proxy-server/src/main.rs View File

@@ -1,4 +1,10 @@
use dora_node_api::{self, dora_core::config::DataId, merged::MergeExternalSend, DoraNode, Event};
use dora_node_api::{
self,
arrow::array::{AsArray, StringArray},
dora_core::config::DataId,
merged::MergeExternalSend,
DoraNode, Event,
};

use eyre::{Context, ContextCompat};
use futures::{
@@ -14,7 +20,7 @@ use hyper::{
};
use message::{
ChatCompletionObject, ChatCompletionObjectChoice, ChatCompletionObjectMessage,
ChatCompletionRequest, ChatCompletionRequestMessage, Usage,
ChatCompletionRequest, Usage,
};
use std::{
collections::VecDeque,
@@ -71,7 +77,7 @@ async fn main() -> eyre::Result<()> {
let merged = events.merge_external_send(server_events);
let events = futures::executor::block_on_stream(merged);

let output_id = DataId::from("chat_completion_request".to_owned());
let output_id = DataId::from("text".to_owned());
let mut reply_channels = VecDeque::new();

for event in events {
@@ -82,45 +88,15 @@ async fn main() -> eyre::Result<()> {
break;
}
ServerEvent::ChatCompletionRequest { request, reply } => {
let message = request
.messages
.into_iter()
.find_map(|m| match m {
ChatCompletionRequestMessage::User(message) => Some(message),
_ => None,
})
.context("no user message found");
match message {
Ok(message) => match message.content() {
message::ChatCompletionUserMessageContent::Text(content) => {
node.send_output_bytes(
output_id.clone(),
Default::default(),
content.len(),
content.as_bytes(),
)
.context("failed to send dora output")?;
reply_channels.push_back((
reply,
content.as_bytes().len() as u64,
request.model,
));
}
message::ChatCompletionUserMessageContent::Parts(_) => {
if reply
.send(Err(eyre::eyre!("unsupported message content")))
.is_err()
{
tracing::warn!("failed to send chat completion reply because channel closed early");
};
}
},
Err(err) => {
if reply.send(Err(err)).is_err() {
tracing::warn!("failed to send chat completion reply error because channel closed early");
}
}
}
let texts = request.to_texts();
node.send_output(
output_id.clone(),
Default::default(),
StringArray::from(texts),
)
.context("failed to send dora output")?;

reply_channels.push_back((reply, 0 as u64, request.model));
}
},
dora_node_api::merged::MergedEvent::Dora(event) => match event {
@@ -130,46 +106,56 @@ async fn main() -> eyre::Result<()> {
metadata: _,
} => {
match id.as_str() {
"completion_reply" => {
"text" => {
let (reply_channel, prompt_tokens, model) =
reply_channels.pop_front().context("no reply channel")?;
let data = TryFrom::try_from(&data)
.with_context(|| format!("invalid reply data: {data:?}"))
.map(|s: &[u8]| ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(String::from_utf8_lossy(s).to_string()),
tool_calls: Vec::new(),
function_call: None,
},
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: s.len() as u64,
total_tokens: prompt_tokens + s.len() as u64,
let data = data.as_string::<i32>();
let string = data.iter().fold("".to_string(), |mut acc, s| {
if let Some(s) = s {
acc.push_str("\n");
acc.push_str(s);
}
acc
});

let data = ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(string.to_string()),
tool_calls: Vec::new(),
function_call: None,
},
});

if reply_channel.send(data).is_err() {
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: string.len() as u64,
total_tokens: prompt_tokens + string.len() as u64,
},
};

if reply_channel.send(Ok(data)).is_err() {
tracing::warn!("failed to send chat completion reply because channel closed early");
}
}
_ => eyre::bail!("unexpected input id: {}", id),
};
}
Event::Stop => {
Event::Stop(_) => {
break;
}
Event::InputClosed { id, .. } => {
info!("Input channel closed for id: {}", id);
}
event => {
println!("Event: {event:#?}")
eyre::bail!("unexpected event: {:#?}", event)
}
},
}


+ 44
- 0
node-hub/openai-proxy-server/src/message.rs View File

@@ -230,6 +230,15 @@ impl<'de> Deserialize<'de> for ChatCompletionRequest {
}
}

impl ChatCompletionRequest {
pub fn to_texts(&self) -> Vec<String> {
self.messages
.iter()
.flat_map(|message| message.to_texts())
.collect()
}
}

/// Message for comprising the conversation.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq)]
#[serde(tag = "role", rename_all = "lowercase")]
@@ -308,6 +317,22 @@ impl ChatCompletionRequestMessage {
ChatCompletionRequestMessage::Tool(_) => None,
}
}

/// The contents of the message.
pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionRequestMessage::System(message) => {
vec![String::from("<|system|>\n") + &message.content]
}
ChatCompletionRequestMessage::User(message) => message.content.to_texts(),
ChatCompletionRequestMessage::Assistant(message) => {
vec![String::from("<|assistant|>\n") + &message.content.clone().unwrap_or_default()]
}
ChatCompletionRequestMessage::Tool(message) => {
vec![String::from("<|tool|>\n") + &message.content.clone()]
}
}
}
}

/// Sampling methods used for chat completion requests.
@@ -587,6 +612,25 @@ impl ChatCompletionUserMessageContent {
ChatCompletionUserMessageContent::Parts(_) => "parts",
}
}

pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionUserMessageContent::Text(text) => {
vec![String::from("user: ") + &text.clone()]
}
ChatCompletionUserMessageContent::Parts(parts) => parts
.iter()
.map(|part| match part {
ContentPart::Text(text_part) => {
String::from("<|user|>\n<|im_start|>\n") + &text_part.text.clone()
}
ContentPart::Image(image) => {
String::from("<|user|>\n<|vision_start|>\n") + &image.image().url.clone()
}
})
.collect(),
}
}
}

/// Define the content part of a user message.


Loading…
Cancel
Save