Browse Source

Merge remote-tracking branch 'origin/add-avif-serialization-for-monochrome' into rescale-vggt-to-meter

rescale-vggt-to-meter
haixuanTao 7 months ago
parent
commit
5924e8743b
33 changed files with 506 additions and 171 deletions
  1. +2
    -2
      Cargo.lock
  2. +1
    -1
      apis/c++/node/src/lib.rs
  3. +1
    -1
      apis/c/node/src/lib.rs
  4. +7
    -2
      apis/python/operator/src/lib.rs
  5. +8
    -1
      apis/rust/node/src/event_stream/event.rs
  6. +3
    -9
      apis/rust/node/src/event_stream/mod.rs
  7. +7
    -4
      apis/rust/node/src/event_stream/thread.rs
  8. +1
    -1
      apis/rust/node/src/lib.rs
  9. +1
    -1
      binaries/daemon/src/spawn.rs
  10. +2
    -2
      binaries/runtime/src/lib.rs
  11. +1
    -1
      binaries/runtime/src/operator/shared_lib.rs
  12. +1
    -1
      examples/multiple-daemons/node/src/main.rs
  13. +2
    -2
      examples/multiple-daemons/sink/src/main.rs
  14. +3
    -3
      examples/openai-server/dataflow-rust.yml
  15. +59
    -1
      examples/openai-server/openai_api_client.py
  16. +16
    -0
      examples/openai-server/qwenvl.yml
  17. +1
    -1
      examples/rust-dataflow/node/src/main.rs
  18. +2
    -2
      examples/rust-dataflow/sink-dynamic/src/main.rs
  19. +2
    -2
      examples/rust-dataflow/sink/src/main.rs
  20. +1
    -1
      examples/rust-dataflow/status-node/src/main.rs
  21. +1
    -1
      examples/rust-ros2-dataflow/node/src/main.rs
  22. +54
    -0
      examples/vggt/depth-to-avif.yaml
  23. +34
    -0
      examples/vggt/image_saver.py
  24. +14
    -0
      libraries/arrow-convert/src/into_impls.rs
  25. +2
    -0
      node-hub/dora-keyboard/dora_keyboard/main.py
  26. +1
    -0
      node-hub/dora-microphone/dora_microphone/main.py
  27. +3
    -3
      node-hub/dora-mistral-rs/src/main.rs
  28. +112
    -31
      node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py
  29. +1
    -1
      node-hub/dora-rav1e/Cargo.toml
  30. +23
    -2
      node-hub/dora-rav1e/src/lib.rs
  31. +40
    -25
      node-hub/dora-vggt/dora_vggt/main.py
  32. +56
    -70
      node-hub/openai-proxy-server/src/main.rs
  33. +44
    -0
      node-hub/openai-proxy-server/src/message.rs

+ 2
- 2
Cargo.lock View File

@@ -1165,9 +1165,9 @@ dependencies = [


[[package]] [[package]]
name = "avif-serialize" name = "avif-serialize"
version = "0.8.3"
version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98922d6a4cfbcb08820c69d8eeccc05bb1f29bfa06b4f5b1dbfe9a868bd7608e"
checksum = "19135c0c7a60bfee564dbe44ab5ce0557c6bf3884e5291a50be76a15640c4fbd"
dependencies = [ dependencies = [
"arrayvec", "arrayvec",
] ]


+ 1
- 1
apis/c++/node/src/lib.rs View File

@@ -144,7 +144,7 @@ pub struct DoraEvent(Option<Event>);
fn event_type(event: &DoraEvent) -> ffi::DoraEventType { fn event_type(event: &DoraEvent) -> ffi::DoraEventType {
match &event.0 { match &event.0 {
Some(event) => match event { Some(event) => match event {
Event::Stop => ffi::DoraEventType::Stop,
Event::Stop(_) => ffi::DoraEventType::Stop,
Event::Input { .. } => ffi::DoraEventType::Input, Event::Input { .. } => ffi::DoraEventType::Input,
Event::InputClosed { .. } => ffi::DoraEventType::InputClosed, Event::InputClosed { .. } => ffi::DoraEventType::InputClosed,
Event::Error(_) => ffi::DoraEventType::Error, Event::Error(_) => ffi::DoraEventType::Error,


+ 1
- 1
apis/c/node/src/lib.rs View File

@@ -91,7 +91,7 @@ pub unsafe extern "C" fn dora_next_event(context: *mut c_void) -> *mut c_void {
pub unsafe extern "C" fn read_dora_event_type(event: *const ()) -> EventType { pub unsafe extern "C" fn read_dora_event_type(event: *const ()) -> EventType {
let event: &Event = unsafe { &*event.cast() }; let event: &Event = unsafe { &*event.cast() };
match event { match event {
Event::Stop => EventType::Stop,
Event::Stop(_) => EventType::Stop,
Event::Input { .. } => EventType::Input, Event::Input { .. } => EventType::Input,
Event::InputClosed { .. } => EventType::InputClosed, Event::InputClosed { .. } => EventType::InputClosed,
Event::Error(_) => EventType::Error, Event::Error(_) => EventType::Error,


+ 7
- 2
apis/python/operator/src/lib.rs View File

@@ -6,7 +6,7 @@ use std::{
use arrow::pyarrow::ToPyArrow; use arrow::pyarrow::ToPyArrow;
use dora_node_api::{ use dora_node_api::{
merged::{MergeExternalSend, MergedEvent}, merged::{MergeExternalSend, MergedEvent},
DoraNode, Event, EventStream, Metadata, MetadataParameters, Parameter,
DoraNode, Event, EventStream, Metadata, MetadataParameters, Parameter, StopCause,
}; };
use eyre::{Context, Result}; use eyre::{Context, Result};
use futures::{Stream, StreamExt}; use futures::{Stream, StreamExt};
@@ -146,7 +146,7 @@ impl PyEvent {


fn ty(event: &Event) -> &str { fn ty(event: &Event) -> &str {
match event { match event {
Event::Stop => "STOP",
Event::Stop(_) => "STOP",
Event::Input { .. } => "INPUT", Event::Input { .. } => "INPUT",
Event::InputClosed { .. } => "INPUT_CLOSED", Event::InputClosed { .. } => "INPUT_CLOSED",
Event::Error(_) => "ERROR", Event::Error(_) => "ERROR",
@@ -158,6 +158,11 @@ impl PyEvent {
match event { match event {
Event::Input { id, .. } => Some(id), Event::Input { id, .. } => Some(id),
Event::InputClosed { id } => Some(id), Event::InputClosed { id } => Some(id),
Event::Stop(cause) => match cause {
StopCause::Manual => Some("MANUAL"),
StopCause::AllInputsClosed => Some("ALL_INPUTS_CLOSED"),
&_ => None,
},
_ => None, _ => None,
} }
} }


+ 8
- 1
apis/rust/node/src/event_stream/event.rs View File

@@ -10,7 +10,7 @@ use shared_memory_extended::{Shmem, ShmemConf};
#[derive(Debug)] #[derive(Debug)]
#[non_exhaustive] #[non_exhaustive]
pub enum Event { pub enum Event {
Stop,
Stop(StopCause),
Reload { Reload {
operator_id: Option<OperatorId>, operator_id: Option<OperatorId>,
}, },
@@ -25,6 +25,13 @@ pub enum Event {
Error(String), Error(String),
} }


#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum StopCause {
Manual,
AllInputsClosed,
}

pub enum RawData { pub enum RawData {
Empty, Empty,
Vec(AVec<u8, ConstAlign<128>>), Vec(AVec<u8, ConstAlign<128>>),


+ 3
- 9
apis/rust/node/src/event_stream/mod.rs View File

@@ -11,7 +11,7 @@ use dora_message::{
node_to_daemon::{DaemonRequest, Timestamped}, node_to_daemon::{DaemonRequest, Timestamped},
DataflowId, DataflowId,
}; };
pub use event::{Event, MappedInputData, RawData};
pub use event::{Event, MappedInputData, RawData, StopCause};
use futures::{ use futures::{
future::{select, Either}, future::{select, Either},
Stream, StreamExt, Stream, StreamExt,
@@ -199,7 +199,7 @@ impl EventStream {
fn convert_event_item(item: EventItem) -> Event { fn convert_event_item(item: EventItem) -> Event {
match item { match item {
EventItem::NodeEvent { event, ack_channel } => match event { EventItem::NodeEvent { event, ack_channel } => match event {
NodeEvent::Stop => Event::Stop,
NodeEvent::Stop => Event::Stop(event::StopCause::Manual),
NodeEvent::Reload { operator_id } => Event::Reload { operator_id }, NodeEvent::Reload { operator_id } => Event::Reload { operator_id },
NodeEvent::InputClosed { id } => Event::InputClosed { id }, NodeEvent::InputClosed { id } => Event::InputClosed { id },
NodeEvent::Input { id, metadata, data } => { NodeEvent::Input { id, metadata, data } => {
@@ -234,13 +234,7 @@ impl EventStream {
Err(err) => Event::Error(format!("{err:?}")), Err(err) => Event::Error(format!("{err:?}")),
} }
} }
NodeEvent::AllInputsClosed => {
let err = eyre!(
"received `AllInputsClosed` event, which should be handled by background task"
);
tracing::error!("{err:?}");
Event::Error(err.wrap_err("internal error").to_string())
}
NodeEvent::AllInputsClosed => Event::Stop(event::StopCause::AllInputsClosed),
}, },


EventItem::FatalError(err) => { EventItem::FatalError(err) => {


+ 7
- 4
apis/rust/node/src/event_stream/thread.rs View File

@@ -92,6 +92,7 @@ fn event_stream_loop(
clock: Arc<uhlc::HLC>, clock: Arc<uhlc::HLC>,
) { ) {
let mut tx = Some(tx); let mut tx = Some(tx);
let mut close_tx = false;
let mut pending_drop_tokens: Vec<(DropToken, flume::Receiver<()>, Instant, u64)> = Vec::new(); let mut pending_drop_tokens: Vec<(DropToken, flume::Receiver<()>, Instant, u64)> = Vec::new();
let mut drop_tokens = Vec::new(); let mut drop_tokens = Vec::new();


@@ -135,10 +136,8 @@ fn event_stream_loop(
data: Some(data), .. data: Some(data), ..
} => data.drop_token(), } => data.drop_token(),
NodeEvent::AllInputsClosed => { NodeEvent::AllInputsClosed => {
// close the event stream
tx = None;
// skip this internal event
continue;
close_tx = true;
None
} }
_ => None, _ => None,
}; };
@@ -166,6 +165,10 @@ fn event_stream_loop(
} else { } else {
tracing::warn!("dropping event because event `tx` was already closed: `{inner:?}`"); tracing::warn!("dropping event because event `tx` was already closed: `{inner:?}`");
} }

if close_tx {
tx = None;
};
} }
}; };
if let Err(err) = result { if let Err(err) = result {


+ 1
- 1
apis/rust/node/src/lib.rs View File

@@ -20,7 +20,7 @@ pub use dora_message::{
metadata::{Metadata, MetadataParameters, Parameter}, metadata::{Metadata, MetadataParameters, Parameter},
DataflowId, DataflowId,
}; };
pub use event_stream::{merged, Event, EventStream, MappedInputData, RawData};
pub use event_stream::{merged, Event, EventStream, MappedInputData, RawData, StopCause};
pub use flume::Receiver; pub use flume::Receiver;
pub use node::{arrow_utils, DataSample, DoraNode, ZERO_COPY_THRESHOLD}; pub use node::{arrow_utils, DataSample, DoraNode, ZERO_COPY_THRESHOLD};




+ 1
- 1
binaries/daemon/src/spawn.rs View File

@@ -540,7 +540,7 @@ pub async fn spawn_node(
// If log is an output, we're sending the logs to the dataflow // If log is an output, we're sending the logs to the dataflow
if let Some(stdout_output_name) = &send_stdout_to { if let Some(stdout_output_name) = &send_stdout_to {
// Convert logs to DataMessage // Convert logs to DataMessage
let array = message.into_arrow();
let array = message.as_str().into_arrow();


let array: ArrayData = array.into(); let array: ArrayData = array.into();
let total_len = required_data_size(&array); let total_len = required_data_size(&array);


+ 2
- 2
binaries/runtime/src/lib.rs View File

@@ -232,10 +232,10 @@ async fn run(
} }
} }
} }
RuntimeEvent::Event(Event::Stop) => {
RuntimeEvent::Event(Event::Stop(cause)) => {
// forward stop event to all operators and close the event channels // forward stop event to all operators and close the event channels
for (_, channel) in operator_channels.drain() { for (_, channel) in operator_channels.drain() {
let _ = channel.send_async(Event::Stop).await;
let _ = channel.send_async(Event::Stop(cause.clone())).await;
} }
} }
RuntimeEvent::Event(Event::Reload { RuntimeEvent::Event(Event::Reload {


+ 1
- 1
binaries/runtime/src/operator/shared_lib.rs View File

@@ -182,7 +182,7 @@ impl<'lib> SharedLibraryOperator<'lib> {
} }


let mut operator_event = match event { let mut operator_event = match event {
Event::Stop => dora_operator_api_types::RawEvent {
Event::Stop(_) => dora_operator_api_types::RawEvent {
input: None, input: None,
input_closed: None, input_closed: None,
stop: true, stop: true,


+ 1
- 1
examples/multiple-daemons/node/src/main.rs View File

@@ -26,7 +26,7 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"), other => eprintln!("Received unexpected input: {other:?}"),
} }
} }


+ 2
- 2
examples/multiple-daemons/sink/src/main.rs View File

@@ -24,8 +24,8 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
} }
Event::InputClosed { id } => { Event::InputClosed { id } => {
println!("Input `{id}` was closed"); println!("Input `{id}` was closed");


+ 3
- 3
examples/openai-server/dataflow-rust.yml View File

@@ -3,14 +3,14 @@ nodes:
build: cargo build -p dora-openai-proxy-server --release build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server path: ../../target/release/dora-openai-proxy-server
outputs: outputs:
- chat_completion_request
- text
inputs: inputs:
completion_reply: dora-echo/echo
text: dora-echo/echo


- id: dora-echo - id: dora-echo
build: pip install -e ../../node-hub/dora-echo build: pip install -e ../../node-hub/dora-echo
path: dora-echo path: dora-echo
inputs: inputs:
echo: dora-openai-server/chat_completion_request
echo: dora-openai-server/text
outputs: outputs:
- echo - echo

+ 59
- 1
examples/openai-server/openai_api_client.py View File

@@ -32,11 +32,69 @@ def test_chat_completion(user_input):
print(f"Error in chat completion: {e}") print(f"Error in chat completion: {e}")




def test_chat_completion_image_url(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


def test_chat_completion_image_base64(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


if __name__ == "__main__": if __name__ == "__main__":
print("Testing API endpoints...") print("Testing API endpoints...")
test_list_models()
# test_list_models()
print("\n" + "=" * 50 + "\n") print("\n" + "=" * 50 + "\n")


chat_input = input("Enter a message for chat completion: ") chat_input = input("Enter a message for chat completion: ")
test_chat_completion(chat_input) test_chat_completion(chat_input)

print("\n" + "=" * 50 + "\n")

test_chat_completion_image_url(chat_input)
print("\n" + "=" * 50 + "\n")
test_chat_completion_image_base64(chat_input)
print("\n" + "=" * 50 + "\n") print("\n" + "=" * 50 + "\n")

+ 16
- 0
examples/openai-server/qwenvl.yml View File

@@ -0,0 +1,16 @@
nodes:
- id: dora-openai-server
build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server
outputs:
- text
inputs:
text: dora-qwen2.5-vl/text

- id: dora-qwen2.5-vl
build: pip install -e ../../node-hub/dora-qwen2-5-vl
path: dora-qwen2-5-vl
inputs:
text: dora-openai-server/text
outputs:
- text

+ 1
- 1
examples/rust-dataflow/node/src/main.rs View File

@@ -26,7 +26,7 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"), other => eprintln!("Received unexpected input: {other:?}"),
} }
} }


+ 2
- 2
examples/rust-dataflow/sink-dynamic/src/main.rs View File

@@ -25,8 +25,8 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
} }
Event::InputClosed { id } => { Event::InputClosed { id } => {
println!("Input `{id}` was closed"); println!("Input `{id}` was closed");


+ 2
- 2
examples/rust-dataflow/sink/src/main.rs View File

@@ -24,8 +24,8 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => {
println!("Received manual stop");
Event::Stop(_) => {
println!("Received stop");
} }
Event::InputClosed { id } => { Event::InputClosed { id } => {
println!("Input `{id}` was closed"); println!("Input `{id}` was closed");


+ 1
- 1
examples/rust-dataflow/status-node/src/main.rs View File

@@ -29,7 +29,7 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("ignoring unexpected input {other}"), other => eprintln!("ignoring unexpected input {other}"),
}, },
Event::Stop => {}
Event::Stop(_) => {}
Event::InputClosed { id } => { Event::InputClosed { id } => {
println!("input `{id}` was closed"); println!("input `{id}` was closed");
if *id == "random" { if *id == "random" {


+ 1
- 1
examples/rust-ros2-dataflow/node/src/main.rs View File

@@ -119,7 +119,7 @@ fn main() -> eyre::Result<()> {
} }
other => eprintln!("Ignoring unexpected input `{other}`"), other => eprintln!("Ignoring unexpected input `{other}`"),
}, },
Event::Stop => println!("Received manual stop"),
Event::Stop(_) => println!("Received stop"),
other => eprintln!("Received unexpected input: {other:?}"), other => eprintln!("Received unexpected input: {other:?}"),
}, },
MergedEvent::External(pose) => { MergedEvent::External(pose) => {


+ 54
- 0
examples/vggt/depth-to-avif.yaml View File

@@ -0,0 +1,54 @@
nodes:
- id: camera
build: pip install opencv-video-capture
path: opencv-video-capture
inputs:
tick: dora/timer/millis/100
outputs:
- image
env:
CAPTURE_PATH: 1

- id: dora-vggt
build: pip install -e ../../node-hub/dora-vggt
path: dora-vggt
inputs:
image: camera/image
outputs:
- depth
- image
env:
DEPTH_ENCODING: mono16

- id: rav1e-depth
path: dora-rav1e
build: cargo build -p dora-rav1e --release
inputs:
depth: dora-vggt/depth
outputs:
- depth
env:
ENCODING: avif

- id: rav1e-image
path: dora-rav1e
build: cargo build -p dora-rav1e --release
inputs:
image: dora-vggt/image
outputs:
- image
env:
ENCODING: avif

- id: bench
path: image_saver.py
inputs:
camera_depth: rav1e-image/image
vggt_depth: rav1e-depth/depth

- id: plot
build: pip install dora-rerun
path: dora-rerun
inputs:
camera/image: dora-vggt/image
camera/depth: dora-vggt/depth

+ 34
- 0
examples/vggt/image_saver.py View File

@@ -0,0 +1,34 @@
from dora import Node

node = Node()

index_dict = {}
i = 0

LEAD_TOPIC = "vggt_depth"

for event in node:
if event["type"] == "INPUT":
if LEAD_TOPIC in event["id"]:
storage = event["value"]
metadata = event["metadata"]
encoding = metadata["encoding"]
width = metadata["width"]
height = metadata["height"]

# Save to file
filename = f"out/{event['id']}_{i}.{encoding}"
with open(filename, "wb") as f:
f.write(storage.to_numpy())
for key, value in index_dict.items():
filename = f"out/{key}_{i}.{value['metadata']['encoding']}"
with open(filename, "wb") as f:
f.write(value["value"])
i += 1
else:
# Store the event in the index dictionary
index_dict[event["id"]] = {
"type": event["type"],
"value": event["value"].to_numpy(),
"metadata": event["metadata"],
}

+ 14
- 0
libraries/arrow-convert/src/into_impls.rs View File

@@ -81,6 +81,20 @@ impl IntoArrow for NaiveTime {
} }
} }


impl IntoArrow for String {
type A = StringArray;
fn into_arrow(self) -> Self::A {
std::iter::once(Some(self)).collect()
}
}

impl IntoArrow for Vec<String> {
type A = StringArray;
fn into_arrow(self) -> Self::A {
StringArray::from(self)
}
}

impl IntoArrow for NaiveDateTime { impl IntoArrow for NaiveDateTime {
type A = arrow::array::TimestampNanosecondArray; type A = arrow::array::TimestampNanosecondArray;
fn into_arrow(self) -> Self::A { fn into_arrow(self) -> Self::A {


+ 2
- 0
node-hub/dora-keyboard/dora_keyboard/main.py View File

@@ -11,6 +11,8 @@ def main():
node = Node() node = Node()


always_none = node.next(timeout=0.001) is None always_none = node.next(timeout=0.001) is None
always_none = node.next(timeout=0.001) is None
print("Always None:", always_none)
with keyboard.Events() as events: with keyboard.Events() as events:
while True: while True:
if not always_none: if not always_none:


+ 1
- 0
node-hub/dora-microphone/dora_microphone/main.py View File

@@ -19,6 +19,7 @@ def main():
start_recording_time = tm.time() start_recording_time = tm.time()
node = Node() node = Node()


always_none = node.next(timeout=0.001) is None
always_none = node.next(timeout=0.001) is None always_none = node.next(timeout=0.001) is None
finished = False finished = False




+ 3
- 3
node-hub/dora-mistral-rs/src/main.rs View File

@@ -41,13 +41,13 @@ async fn main() -> eyre::Result<()> {
node.send_output( node.send_output(
mistral_output.clone(), mistral_output.clone(),
metadata.parameters, metadata.parameters,
output.into_arrow(),
output.as_str().into_arrow(),
)?; )?;
} }
other => eprintln!("Received input `{other}`"), other => eprintln!("Received input `{other}`"),
}, },
Event::Stop => {
println!("Received manual stop")
Event::Stop(_) => {
println!("Received command");
} }
Event::InputClosed { id } => { Event::InputClosed { id } => {
println!("input `{id}` was closed"); println!("input `{id}` was closed");


+ 112
- 31
node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py View File

@@ -62,29 +62,118 @@ if ADAPTER_PATH != "":
processor = AutoProcessor.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) processor = AutoProcessor.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)




def generate(frames: dict, question, history, past_key_values=None, image_id=None):
def generate(
frames: dict, texts: list[str], history, past_key_values=None, image_id=None
):
"""Generate the response to the question given the image using Qwen2 model.""" """Generate the response to the question given the image using Qwen2 model."""
if image_id is not None: if image_id is not None:
images = [frames[image_id]] images = [frames[image_id]]
else: else:
images = list(frames.values()) images = list(frames.values())
messages = [
{
"role": "user",
"content": [

messages = []

for text in texts:
if text.startswith("<|system|>\n"):
messages.append(
{ {
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
"role": "system",
"content": [
{"type": "text", "text": text.replace("<|system|>\n", "")},
],
} }
for image in images
]
+ [
{"type": "text", "text": question},
],
},
]
)
elif text.startswith("<|assistant|>\n"):
messages.append(
{
"role": "assistant",
"content": [
{"type": "text", "text": text.replace("<|assistant|>\n", "")},
],
}
)
elif text.startswith("<|tool|>\n"):
messages.append(
{
"role": "tool",
"content": [
{"type": "text", "text": text.replace("<|tool|>\n", "")},
],
}
)
elif text.startswith("<|user|>\n<|im_start|>\n"):
messages.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": text.replace("<|user|>\n<|im_start|>\n", ""),
},
],
}
)
elif text.startswith("<|user|>\n<|vision_start|>\n"):
# Handle the case where the text starts with <|user|>\n<|vision_start|>
image_url = text.replace("<|user|>\n<|vision_start|>\n", "")

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"].append(
{
"type": "image",
"image": image_url,
}
)
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image_url,
},
],
}
)
else:
messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": text},
],
}
)

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"] += [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
]
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
],
}
)

tmp_history = history + messages tmp_history = history + messages
# Preparation for inference # Preparation for inference
text = processor.apply_chat_template( text = processor.apply_chat_template(
@@ -120,19 +209,13 @@ def generate(frames: dict, question, history, past_key_values=None, image_id=Non
clean_up_tokenization_spaces=False, clean_up_tokenization_spaces=False,
) )
if HISTORY: if HISTORY:
history += [
{
"role": "user",
"content": [
{"type": "text", "text": question},
],
},
history = tmp_history + [
{ {
"role": "assistant", "role": "assistant",
"content": [ "content": [
{"type": "text", "text": output_text[0]}, {"type": "text", "text": output_text[0]},
], ],
},
}
] ]


return output_text[0], history, past_key_values return output_text[0], history, past_key_values
@@ -207,24 +290,22 @@ def main():


elif "text" in event_id: elif "text" in event_id:
if len(event["value"]) > 0: if len(event["value"]) > 0:
text = event["value"][0].as_py()
texts = event["value"].to_pylist()
image_id = event["metadata"].get("image_id", None) image_id = event["metadata"].get("image_id", None)
else: else:
text = cached_text
words = text.split()
texts = cached_text
words = texts[-1].split()
if len(ACTIVATION_WORDS) > 0 and all( if len(ACTIVATION_WORDS) > 0 and all(
word not in ACTIVATION_WORDS for word in words word not in ACTIVATION_WORDS for word in words
): ):
continue continue


cached_text = text
cached_text = texts


if len(frames.keys()) == 0:
continue
# set the max number of tiles in `max_num` # set the max number of tiles in `max_num`
response, history, past_key_values = generate( response, history, past_key_values = generate(
frames, frames,
text,
texts,
history, history,
past_key_values, past_key_values,
image_id, image_id,


+ 1
- 1
node-hub/dora-rav1e/Cargo.toml View File

@@ -25,7 +25,7 @@ pyo3 = { workspace = true, features = [
"eyre", "eyre",
"generate-import-lib", "generate-import-lib",
], optional = true } ], optional = true }
avif-serialize = "0.8.3"
avif-serialize = "0.8.4"




[lib] [lib]


+ 23
- 2
node-hub/dora-rav1e/src/lib.rs View File

@@ -336,7 +336,7 @@ pub fn lib_main() -> Result<()> {
if let Some(buffer) = data.as_primitive_opt::<UInt16Type>() { if let Some(buffer) = data.as_primitive_opt::<UInt16Type>() {
let mut buffer = buffer.values().to_vec(); let mut buffer = buffer.values().to_vec();
if std::env::var("FILL_ZEROS") if std::env::var("FILL_ZEROS")
.map(|s| s != "false")
.map(|s| s.to_lowercase() != "false")
.unwrap_or(true) .unwrap_or(true)
{ {
fill_zeros_toward_center_y_plane_in_place(&mut buffer, width, height); fill_zeros_toward_center_y_plane_in_place(&mut buffer, width, height);
@@ -370,7 +370,28 @@ pub fn lib_main() -> Result<()> {
let data = pkt.data; let data = pkt.data;
match output_encoding.as_str() { match output_encoding.as_str() {
"avif" => { "avif" => {
warn!("avif encoding not supported for mono16");
metadata.parameters.insert(
"encoding".to_string(),
Parameter::String("avif".to_string()),
);

let data = avif_serialize::Aviffy::new()
.full_color_range(false)
.set_seq_profile(0)
.set_monochrome(true)
.to_vec(
&data,
None,
enc.width as u32,
enc.height as u32,
enc.bit_depth as u8,
);

let arrow = data.into_arrow();

node.send_output(id, metadata.parameters.clone(), arrow)
.context("could not send output")
.unwrap();
} }
_ => { _ => {
metadata.parameters.insert( metadata.parameters.insert(


+ 40
- 25
node-hub/dora-vggt/dora_vggt/main.py View File

@@ -1,8 +1,9 @@
"""TODO: Add docstring.""" """TODO: Add docstring."""


import io import io
from collections import deque as Deque
import os import os
from collections import deque as Deque

import cv2 import cv2
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
@@ -10,22 +11,24 @@ import torch
from dora import Node from dora import Node
from PIL import Image from PIL import Image
from vggt.models.vggt import VGGT from vggt.models.vggt import VGGT
from vggt.utils.geometry import unproject_depth_map_to_point_map
from vggt.utils.load_fn import load_and_preprocess_images from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.pose_enc import pose_encoding_to_extri_intri from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.utils.geometry import unproject_depth_map_to_point_map


CAMERA_HEIGHT = os.getenv("CAMERA_HEIGHT", "0.01") CAMERA_HEIGHT = os.getenv("CAMERA_HEIGHT", "0.01")


# bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+) # bfloat16 is supported on Ampere GPUs (Compute Capability 8.0+)
dtype = torch.bfloat16 dtype = torch.bfloat16


# Check if cuda is available and set the device accordingly
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize the model and load the pretrained weights. # Initialize the model and load the pretrained weights.
# This will automatically download the model weights the first time it's run, which may take a while. # This will automatically download the model weights the first time it's run, which may take a while.
model = VGGT.from_pretrained("facebook/VGGT-1B").to("cuda")
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
model.eval() model.eval()




DEPTH_ENCODING = os.environ.get("DEPTH_ENCODING", "float64")




def main(): def main():
@@ -35,7 +38,6 @@ def main():


for event in node: for event in node:
if event["type"] == "INPUT": if event["type"] == "INPUT":

if "image" in event["id"]: if "image" in event["id"]:
storage = event["value"] storage = event["value"]
metadata = event["metadata"] metadata = event["metadata"]
@@ -83,7 +85,7 @@ def main():
raw_images.append(buffer) raw_images.append(buffer)


with torch.no_grad(): with torch.no_grad():
images = load_and_preprocess_images(raw_images).to("cuda")
images = load_and_preprocess_images(raw_images).to(device)


images = images[None] # add batch dimension images = images[None] # add batch dimension
aggregated_tokens_list, ps_idx = model.aggregator(images) aggregated_tokens_list, ps_idx = model.aggregator(images)
@@ -99,25 +101,34 @@ def main():
aggregated_tokens_list, images, ps_idx aggregated_tokens_list, images, ps_idx
) )


# Construct 3D Points from Depth Maps and Cameras # Construct 3D Points from Depth Maps and Cameras
# which usually leads to more accurate 3D points than point map branch # which usually leads to more accurate 3D points than point map branch
point_map_by_unprojection = unproject_depth_map_to_point_map(depth_map.squeeze(0),
extrinsic.squeeze(0),
intrinsic.squeeze(0))
point_map_by_unprojection = unproject_depth_map_to_point_map(
depth_map.squeeze(0), extrinsic.squeeze(0), intrinsic.squeeze(0)
)


# Get the last quartile of the 2nd axis # Get the last quartile of the 2nd axis
z_value = point_map_by_unprojection[0, :, :, 2] z_value = point_map_by_unprojection[0, :, :, 2]
z_first_quartile = np.quantile(z_value, 0.15) z_first_quartile = np.quantile(z_value, 0.15)
scale_factor = float(CAMERA_HEIGHT) / z_first_quartile scale_factor = float(CAMERA_HEIGHT) / z_first_quartile
print(f"Scale factor: {scale_factor}, with height: {CAMERA_HEIGHT} and max depth: {point_map_by_unprojection[0, :, :, 2].min()}")
print(f" 0. all min and max depth values: {point_map_by_unprojection[0, :, :, 0].min()} / {point_map_by_unprojection[0, :, :, 0].max()}")
print(f" 1. all min and max depth values: {point_map_by_unprojection[0, :, :, 1].min()} / {point_map_by_unprojection[0, :, :, 1].max()}")
print(f" 2. all min and max depth values: {point_map_by_unprojection[0, :, :, 2].min()} / {point_map_by_unprojection[0, :, :, 2].max()}")
print(
f"Scale factor: {scale_factor}, with height: {CAMERA_HEIGHT} and max depth: {point_map_by_unprojection[0, :, :, 2].min()}"
)
print(
f" 0. all min and max depth values: {point_map_by_unprojection[0, :, :, 0].min()} / {point_map_by_unprojection[0, :, :, 0].max()}"
)
print(
f" 1. all min and max depth values: {point_map_by_unprojection[0, :, :, 1].min()} / {point_map_by_unprojection[0, :, :, 1].max()}"
)
print(
f" 2. all min and max depth values: {point_map_by_unprojection[0, :, :, 2].min()} / {point_map_by_unprojection[0, :, :, 2].max()}"
)
print(f" first quartile of z values: {z_first_quartile}") print(f" first quartile of z values: {z_first_quartile}")
depth_map[depth_conf < 1.0] = 0.0 # Set low confidence pixels to 0 depth_map[depth_conf < 1.0] = 0.0 # Set low confidence pixels to 0
depth_map = depth_map * scale_factor # Scale depth map to the desired height
depth_map = (
depth_map * scale_factor
) # Scale depth map to the desired height
depth_map = depth_map.to(torch.float64) depth_map = depth_map.to(torch.float64)


intrinsic = intrinsic[-1][-1] intrinsic = intrinsic[-1][-1]
@@ -127,20 +138,24 @@ def main():
r_1 = intrinsic[1, 2] r_1 = intrinsic[1, 2]
depth_map = depth_map[-1][-1].cpu().numpy() depth_map = depth_map[-1][-1].cpu().numpy()
# Warning: Make sure to add my_output_id and my_input_id within the dataflow. # Warning: Make sure to add my_output_id and my_input_id within the dataflow.
if DEPTH_ENCODING == "mono16":
depth_map = (depth_map * 1000).astype(np.uint16)

node.send_output( node.send_output(
output_id="depth", output_id="depth",
data=pa.array(depth_map.ravel()), data=pa.array(depth_map.ravel()),
metadata={ metadata={
"width": depth_map.shape[1], "width": depth_map.shape[1],
"height": depth_map.shape[0], "height": depth_map.shape[0],
"focal": [
int(f_0),
int(f_1),
],
"resolution": [
int(r_0),
int(r_1),
],
"encoding": DEPTH_ENCODING,
"focal": [
int(f_0),
int(f_1),
],
"resolution": [
int(r_0),
int(r_1),
],
}, },
) )




+ 56
- 70
node-hub/openai-proxy-server/src/main.rs View File

@@ -1,4 +1,10 @@
use dora_node_api::{self, dora_core::config::DataId, merged::MergeExternalSend, DoraNode, Event};
use dora_node_api::{
self,
arrow::array::{AsArray, StringArray},
dora_core::config::DataId,
merged::MergeExternalSend,
DoraNode, Event,
};


use eyre::{Context, ContextCompat}; use eyre::{Context, ContextCompat};
use futures::{ use futures::{
@@ -14,7 +20,7 @@ use hyper::{
}; };
use message::{ use message::{
ChatCompletionObject, ChatCompletionObjectChoice, ChatCompletionObjectMessage, ChatCompletionObject, ChatCompletionObjectChoice, ChatCompletionObjectMessage,
ChatCompletionRequest, ChatCompletionRequestMessage, Usage,
ChatCompletionRequest, Usage,
}; };
use std::{ use std::{
collections::VecDeque, collections::VecDeque,
@@ -71,7 +77,7 @@ async fn main() -> eyre::Result<()> {
let merged = events.merge_external_send(server_events); let merged = events.merge_external_send(server_events);
let events = futures::executor::block_on_stream(merged); let events = futures::executor::block_on_stream(merged);


let output_id = DataId::from("chat_completion_request".to_owned());
let output_id = DataId::from("text".to_owned());
let mut reply_channels = VecDeque::new(); let mut reply_channels = VecDeque::new();


for event in events { for event in events {
@@ -82,45 +88,15 @@ async fn main() -> eyre::Result<()> {
break; break;
} }
ServerEvent::ChatCompletionRequest { request, reply } => { ServerEvent::ChatCompletionRequest { request, reply } => {
let message = request
.messages
.into_iter()
.find_map(|m| match m {
ChatCompletionRequestMessage::User(message) => Some(message),
_ => None,
})
.context("no user message found");
match message {
Ok(message) => match message.content() {
message::ChatCompletionUserMessageContent::Text(content) => {
node.send_output_bytes(
output_id.clone(),
Default::default(),
content.len(),
content.as_bytes(),
)
.context("failed to send dora output")?;
reply_channels.push_back((
reply,
content.as_bytes().len() as u64,
request.model,
));
}
message::ChatCompletionUserMessageContent::Parts(_) => {
if reply
.send(Err(eyre::eyre!("unsupported message content")))
.is_err()
{
tracing::warn!("failed to send chat completion reply because channel closed early");
};
}
},
Err(err) => {
if reply.send(Err(err)).is_err() {
tracing::warn!("failed to send chat completion reply error because channel closed early");
}
}
}
let texts = request.to_texts();
node.send_output(
output_id.clone(),
Default::default(),
StringArray::from(texts),
)
.context("failed to send dora output")?;

reply_channels.push_back((reply, 0 as u64, request.model));
} }
}, },
dora_node_api::merged::MergedEvent::Dora(event) => match event { dora_node_api::merged::MergedEvent::Dora(event) => match event {
@@ -130,46 +106,56 @@ async fn main() -> eyre::Result<()> {
metadata: _, metadata: _,
} => { } => {
match id.as_str() { match id.as_str() {
"completion_reply" => {
"text" => {
let (reply_channel, prompt_tokens, model) = let (reply_channel, prompt_tokens, model) =
reply_channels.pop_front().context("no reply channel")?; reply_channels.pop_front().context("no reply channel")?;
let data = TryFrom::try_from(&data)
.with_context(|| format!("invalid reply data: {data:?}"))
.map(|s: &[u8]| ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(String::from_utf8_lossy(s).to_string()),
tool_calls: Vec::new(),
function_call: None,
},
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: s.len() as u64,
total_tokens: prompt_tokens + s.len() as u64,
let data = data.as_string::<i32>();
let string = data.iter().fold("".to_string(), |mut acc, s| {
if let Some(s) = s {
acc.push_str("\n");
acc.push_str(s);
}
acc
});

let data = ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(string.to_string()),
tool_calls: Vec::new(),
function_call: None,
}, },
});

if reply_channel.send(data).is_err() {
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: string.len() as u64,
total_tokens: prompt_tokens + string.len() as u64,
},
};

if reply_channel.send(Ok(data)).is_err() {
tracing::warn!("failed to send chat completion reply because channel closed early"); tracing::warn!("failed to send chat completion reply because channel closed early");
} }
} }
_ => eyre::bail!("unexpected input id: {}", id), _ => eyre::bail!("unexpected input id: {}", id),
}; };
} }
Event::Stop => {
Event::Stop(_) => {
break; break;
} }
Event::InputClosed { id, .. } => {
info!("Input channel closed for id: {}", id);
}
event => { event => {
println!("Event: {event:#?}")
eyre::bail!("unexpected event: {:#?}", event)
} }
}, },
} }


+ 44
- 0
node-hub/openai-proxy-server/src/message.rs View File

@@ -230,6 +230,15 @@ impl<'de> Deserialize<'de> for ChatCompletionRequest {
} }
} }


impl ChatCompletionRequest {
pub fn to_texts(&self) -> Vec<String> {
self.messages
.iter()
.flat_map(|message| message.to_texts())
.collect()
}
}

/// Message for comprising the conversation. /// Message for comprising the conversation.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq)] #[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq)]
#[serde(tag = "role", rename_all = "lowercase")] #[serde(tag = "role", rename_all = "lowercase")]
@@ -308,6 +317,22 @@ impl ChatCompletionRequestMessage {
ChatCompletionRequestMessage::Tool(_) => None, ChatCompletionRequestMessage::Tool(_) => None,
} }
} }

/// The contents of the message.
pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionRequestMessage::System(message) => {
vec![String::from("<|system|>\n") + &message.content]
}
ChatCompletionRequestMessage::User(message) => message.content.to_texts(),
ChatCompletionRequestMessage::Assistant(message) => {
vec![String::from("<|assistant|>\n") + &message.content.clone().unwrap_or_default()]
}
ChatCompletionRequestMessage::Tool(message) => {
vec![String::from("<|tool|>\n") + &message.content.clone()]
}
}
}
} }


/// Sampling methods used for chat completion requests. /// Sampling methods used for chat completion requests.
@@ -587,6 +612,25 @@ impl ChatCompletionUserMessageContent {
ChatCompletionUserMessageContent::Parts(_) => "parts", ChatCompletionUserMessageContent::Parts(_) => "parts",
} }
} }

pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionUserMessageContent::Text(text) => {
vec![String::from("user: ") + &text.clone()]
}
ChatCompletionUserMessageContent::Parts(parts) => parts
.iter()
.map(|part| match part {
ContentPart::Text(text_part) => {
String::from("<|user|>\n<|im_start|>\n") + &text_part.text.clone()
}
ContentPart::Image(image) => {
String::from("<|user|>\n<|vision_start|>\n") + &image.image().url.clone()
}
})
.collect(),
}
}
} }


/// Define the content part of a user message. /// Define the content part of a user message.


Loading…
Cancel
Save