Browse Source

[MNT] black format

tags/v0.3.2
bxdd 2 years ago
parent
commit
bf43b582cc
3 changed files with 12 additions and 6 deletions
  1. +9
    -3
      learnware/client/learnware_client.py
  2. +1
    -1
      learnware/learnware/base.py
  3. +2
    -2
      learnware/learnware/reuse.py

+ 9
- 3
learnware/client/learnware_client.py View File

@@ -432,11 +432,17 @@ class LearnwareClient:
logger.info("test ok")
pass

def reuse_learnware(self, input_array: np.ndarray, learnware_list: List[Learnware], learnware_zippaths: List[str], reuser: BaseReuser):
def reuse_learnware(
self,
input_array: np.ndarray,
learnware_list: List[Learnware],
learnware_zippaths: List[str],
reuser: BaseReuser,
):
logger.info(f"reuse learnare list {learnware_list} with reuser {reuser}")
with LearnwaresContainer(learnware_list, learnware_zippaths) as env_container:
learnware_list = env_container.get_learnware_list_with_container()
reuser.reset(learnware_list=learnware_list)
result = reuser.predict(input_array)
return result
return result

+ 1
- 1
learnware/learnware/base.py View File

@@ -91,7 +91,7 @@ class BaseReuser:
for _k, _v in kwargs.items():
if hasattr(_k):
setattr(_k, _v)
def predict(self, user_data: np.ndarray) -> np.ndarray:
"""Give the final prediction for user data with reused learnware



+ 2
- 2
learnware/learnware/reuse.py View File

@@ -265,7 +265,7 @@ class JobSelectorReuser(BaseReuser):
class AveragingReuser(BaseReuser):
"""Baseline Multiple Learnware Reuser using Ensemble Method"""

def __init__(self, learnware_list: List[Learnware] = None, mode: str = 'mean'):
def __init__(self, learnware_list: List[Learnware] = None, mode: str = "mean"):
"""The initialization method for averaging ensemble reuser

Parameters
@@ -330,7 +330,7 @@ class EnsemblePruningReuser(BaseReuser):
References: [1] Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou. Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution. In: Proceedings of the 17th International Conference on Parallel Problem Solving from Nature (PPSN'22), Dortmund, Germany, 2022.
"""

def __init__(self, learnware_list: List[Learnware] = None, mode: str = 'classification'):
def __init__(self, learnware_list: List[Learnware] = None, mode: str = "classification"):
"""The initialization method for ensemble pruning reuser

Parameters


Loading…
Cancel
Save