|
|
|
@@ -21,7 +21,7 @@ logger = get_module_logger("Reuser") |
|
|
|
class JobSelectorReuser(BaseReuser): |
|
|
|
"""Baseline Multiple Learnware Reuser using Job Selector Method""" |
|
|
|
|
|
|
|
def __init__(self, learnware_list: List[Learnware], herding_num: int = 1000, use_herding: bool = True): |
|
|
|
def __init__(self, learnware_list: List[Learnware] = None, herding_num: int = 1000, use_herding: bool = True): |
|
|
|
"""The initialization method for job selector reuser |
|
|
|
|
|
|
|
Parameters |
|
|
|
@@ -265,7 +265,7 @@ class JobSelectorReuser(BaseReuser): |
|
|
|
class AveragingReuser(BaseReuser): |
|
|
|
"""Baseline Multiple Learnware Reuser using Ensemble Method""" |
|
|
|
|
|
|
|
def __init__(self, learnware_list: List[Learnware], mode: str): |
|
|
|
def __init__(self, learnware_list: List[Learnware] = None, mode: str = 'mean'): |
|
|
|
"""The initialization method for averaging ensemble reuser |
|
|
|
|
|
|
|
Parameters |
|
|
|
@@ -330,7 +330,7 @@ class EnsemblePruningReuser(BaseReuser): |
|
|
|
References: [1] Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou. Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution. In: Proceedings of the 17th International Conference on Parallel Problem Solving from Nature (PPSN'22), Dortmund, Germany, 2022. |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, learnware_list: List[Learnware], mode: str): |
|
|
|
def __init__(self, learnware_list: List[Learnware] = None, mode: str = 'classification'): |
|
|
|
"""The initialization method for ensemble pruning reuser |
|
|
|
|
|
|
|
Parameters |
|
|
|
|