Fix bugs for container when pip installtags/v0.3.2
| @@ -192,7 +192,7 @@ def get_zca_matrix(X, reg_coef=0.1): | |||
| def layernorm_data(X): | |||
| X_processed = X - torch.mean(X, [1, 2, 3], keepdim=True) | |||
| X_processed = X_processed / torch.sqrt(torch.sum(X_processed ** 2, [1, 2, 3], keepdim=True)) | |||
| X_processed = X_processed / torch.sqrt(torch.sum(X_processed**2, [1, 2, 3], keepdim=True)) | |||
| return X_processed | |||
| @@ -240,7 +240,10 @@ def augment(images, dc_aug_param, device): | |||
| def scalefun(i): | |||
| h = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2]) | |||
| w = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2]) | |||
| tmp = F.interpolate(images[i : i + 1], [h, w],)[0] | |||
| tmp = F.interpolate( | |||
| images[i : i + 1], | |||
| [h, w], | |||
| )[0] | |||
| mhw = max(h, w, shape[2], shape[3]) | |||
| im_ = torch.zeros(shape[1], mhw, mhw, dtype=torch.float, device=device) | |||
| r = int((mhw - h) / 2) | |||
| @@ -70,7 +70,7 @@ def measure_aux_algo(idx, test_sample, model): | |||
| # Simple "Memory profilers" to see memory usage | |||
| def get_memory_usage(): | |||
| return np.round(psutil.Process(os.getpid()).memory_info()[0] / 2.0 ** 30, 2) | |||
| return np.round(psutil.Process(os.getpid()).memory_info()[0] / 2.0**30, 2) | |||
| def sizeof_fmt(num, suffix="B"): | |||
| @@ -84,7 +84,7 @@ def sizeof_fmt(num, suffix="B"): | |||
| # Memory Reducer | |||
| def reduce_mem_usage(df, float16_flag=True, verbose=True): | |||
| numerics = ["int16", "int32", "int64", "float16", "float32", "float64"] | |||
| start_mem = df.memory_usage().sum() / 1024 ** 2 | |||
| start_mem = df.memory_usage().sum() / 1024**2 | |||
| for col in df.columns: | |||
| col_type = df[col].dtypes | |||
| if col_type in numerics: | |||
| @@ -106,7 +106,7 @@ def reduce_mem_usage(df, float16_flag=True, verbose=True): | |||
| df[col] = df[col].astype(np.float32) | |||
| else: | |||
| df[col] = df[col].astype(np.float64) | |||
| end_mem = df.memory_usage().sum() / 1024 ** 2 | |||
| end_mem = df.memory_usage().sum() / 1024**2 | |||
| if verbose: | |||
| print( | |||
| "Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)".format( | |||
| @@ -69,8 +69,15 @@ def main(): | |||
| } | |||
| res = session.post( | |||
| submit_url, | |||
| data={"semantic_specification": json.dumps(semantic_specification),}, | |||
| files={"learnware_file": open(os.path.join(os.path.abspath("."), "learnware_pool", learnware), "rb",)}, | |||
| data={ | |||
| "semantic_specification": json.dumps(semantic_specification), | |||
| }, | |||
| files={ | |||
| "learnware_file": open( | |||
| os.path.join(os.path.abspath("."), "learnware_pool", learnware), | |||
| "rb", | |||
| ) | |||
| }, | |||
| ) | |||
| assert json.loads(res.text)["code"] == 0, "Upload error" | |||
| @@ -67,7 +67,7 @@ def get_split_errs(algo): | |||
| for tmp in range(len(proportion_list)): | |||
| model = lgb.LGBMModel( | |||
| boosting_type="gbdt", | |||
| num_leaves=2 ** 7 - 1, | |||
| num_leaves=2**7 - 1, | |||
| learning_rate=0.01, | |||
| objective="rmse", | |||
| metric="rmse", | |||
| @@ -119,7 +119,7 @@ def get_errors(algo): | |||
| if algo == "lgb": | |||
| model = lgb.LGBMModel( | |||
| boosting_type="gbdt", | |||
| num_leaves=2 ** 7 - 1, | |||
| num_leaves=2**7 - 1, | |||
| learning_rate=0.01, | |||
| objective="rmse", | |||
| metric="rmse", | |||
| @@ -72,8 +72,15 @@ def main(): | |||
| } | |||
| res = session.post( | |||
| submit_url, | |||
| data={"semantic_specification": json.dumps(semantic_specification),}, | |||
| files={"learnware_file": open(os.path.join(os.path.abspath("."), "learnware_pool", learnware), "rb",)}, | |||
| data={ | |||
| "semantic_specification": json.dumps(semantic_specification), | |||
| }, | |||
| files={ | |||
| "learnware_file": open( | |||
| os.path.join(os.path.abspath("."), "learnware_pool", learnware), | |||
| "rb", | |||
| ) | |||
| }, | |||
| ) | |||
| assert json.loads(res.text)["code"] == 0, "Upload error" | |||
| @@ -19,7 +19,10 @@ curr_root = os.path.dirname(os.path.abspath(__file__)) | |||
| user_semantic = { | |||
| "Data": {"Values": ["Table"], "Type": "Class"}, | |||
| "Task": {"Values": ["Classification"], "Type": "Class",}, | |||
| "Task": { | |||
| "Values": ["Classification"], | |||
| "Type": "Class", | |||
| }, | |||
| "Library": {"Values": ["Scikit-learn"], "Type": "Class"}, | |||
| "Scenario": {"Values": ["Education"], "Type": "Tag"}, | |||
| "Description": {"Values": "", "Type": "String"}, | |||
| @@ -18,7 +18,6 @@ logger = get_module_logger(module_name="client_container") | |||
| class ModelEnvContainer(BaseModel): | |||
| def __init__(self, model_config: dict, learnware_zippath: str): | |||
| self.model_script = os.path.join(C.package_path, "client", "scripts", "run_model.py") | |||
| self.model_config = model_config | |||
| self.conda_env = f"learnware_{shortuuid.uuid()}" | |||
| @@ -104,8 +104,13 @@ class LearnwareClient: | |||
| for chunk in file_chunks(learnware_file): | |||
| response = requests.post( | |||
| url_upload, | |||
| files={"chunk_file": chunk,}, | |||
| data={"file_hash": file_hash, "chunk_begin": begin,}, | |||
| files={ | |||
| "chunk_file": chunk, | |||
| }, | |||
| data={ | |||
| "file_hash": file_hash, | |||
| "chunk_begin": begin, | |||
| }, | |||
| headers=self.headers, | |||
| ) | |||
| @@ -123,7 +128,10 @@ class LearnwareClient: | |||
| response = requests.post( | |||
| url_add, | |||
| json={"file_hash": file_hash, "semantic_specification": json.dumps(semantic_specification),}, | |||
| json={ | |||
| "file_hash": file_hash, | |||
| "semantic_specification": json.dumps(semantic_specification), | |||
| }, | |||
| headers=self.headers, | |||
| ) | |||
| @@ -137,7 +145,14 @@ class LearnwareClient: | |||
| def download_learnware(self, learnware_id, save_path): | |||
| url = f"{self.host}/engine/download_learnware" | |||
| response = requests.get(url, params={"learnware_id": learnware_id,}, headers=self.headers, stream=True,) | |||
| response = requests.get( | |||
| url, | |||
| params={ | |||
| "learnware_id": learnware_id, | |||
| }, | |||
| headers=self.headers, | |||
| stream=True, | |||
| ) | |||
| if response.status_code != 200: | |||
| raise Exception("download failed: " + json.dumps(response.json())) | |||
| @@ -269,7 +284,6 @@ class LearnwareClient: | |||
| def create_semantic_specification( | |||
| self, name, description, data_type, task_type, library_type, senarioes, input_description, output_description | |||
| ): | |||
| semantic_specification = dict() | |||
| semantic_specification["Input"] = input_description | |||
| semantic_specification["Output"] = output_description | |||
| @@ -24,8 +24,7 @@ def try_to_run(args, timeout=5, retry=5): | |||
| def parse_pip_requirement(line: str): | |||
| """Parse pip requirement line to package name | |||
| """ | |||
| """Parse pip requirement line to package name""" | |||
| line = line.strip() | |||
| @@ -47,8 +46,7 @@ def parse_pip_requirement(line: str): | |||
| def read_pip_packages_from_requirements(requirements_file: str) -> List[str]: | |||
| """Read requiremnts.txt and parse it to list | |||
| """ | |||
| """Read requiremnts.txt and parse it to list""" | |||
| packages = [] | |||
| lines = [] | |||
| @@ -174,7 +172,6 @@ def filter_nonexist_conda_packages_file(yaml_file: str, output_yaml_file: str): | |||
| def filter_nonexist_pip_packages_file(requirements_file: str, output_file: str): | |||
| packages, lines = read_pip_packages_from_requirements(requirements_file) | |||
| exist_packages, nonexist_packages = filter_nonexist_pip_packages(packages) | |||
| @@ -10,14 +10,11 @@ logger = get_module_logger(module_name="client_utils") | |||
| def system_execute(args, timeout=None): | |||
| com_process = subprocess.run( | |||
| args, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, timeout=timeout | |||
| ) | |||
| com_process = subprocess.run(args, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, timeout=timeout) | |||
| try: | |||
| com_process.check_returncode() | |||
| except subprocess.CalledProcessError as err: | |||
| print(com_process.stderr) | |||
| print("System Execute Error:", str(com_process.stderr)) | |||
| raise err | |||
| @@ -27,14 +24,14 @@ def remove_enviroment(conda_env): | |||
| def install_environment(zip_path, conda_env): | |||
| """Install environment of a learnware | |||
| Parameters | |||
| ---------- | |||
| zip_path : str | |||
| Path of the learnware zip file | |||
| conda_env : str | |||
| a new conda environment will be created with the given name; | |||
| Raises | |||
| ------ | |||
| Exception | |||
| @@ -59,7 +56,7 @@ def install_environment(zip_path, conda_env): | |||
| z_file.extract(member="requirements.txt", path=tempdir) | |||
| requirements_path: str = os.path.join(tempdir, "requirements.txt") | |||
| requirements_path_filter: str = os.path.join(tempdir, "requirements_filter.txt") | |||
| logger.info(f"checking the avaliabe pip packages for {yaml_path}") | |||
| logger.info(f"checking the avaliabe pip packages for {conda_env}") | |||
| filter_nonexist_pip_packages_file( | |||
| requirements_file=requirements_path, output_file=requirements_path_filter | |||
| ) | |||
| @@ -72,7 +72,10 @@ os.makedirs(DATABASE_PATH, exist_ok=True) | |||
| os.makedirs(STDOUT_PATH, exist_ok=True) | |||
| semantic_config = { | |||
| "Data": {"Values": ["Table", "Image", "Video", "Text", "Audio"], "Type": "Class",}, # Choose only one class | |||
| "Data": { | |||
| "Values": ["Table", "Image", "Video", "Text", "Audio"], | |||
| "Type": "Class", | |||
| }, # Choose only one class | |||
| "Task": { | |||
| "Values": [ | |||
| "Classification", | |||
| @@ -113,8 +116,14 @@ semantic_config = { | |||
| ], | |||
| "Type": "Tag", # Choose one or more tags | |||
| }, | |||
| "Description": {"Values": None, "Type": "String",}, | |||
| "Name": {"Values": None, "Type": "String",}, | |||
| "Description": { | |||
| "Values": None, | |||
| "Type": "String", | |||
| }, | |||
| "Name": { | |||
| "Values": None, | |||
| "Type": "String", | |||
| }, | |||
| } | |||
| _DEFAULT_CONFIG = { | |||
| @@ -128,7 +137,10 @@ _DEFAULT_CONFIG = { | |||
| "learnware_pool_path": LEARNWARE_POOL_PATH, | |||
| "learnware_zip_pool_path": LEARNWARE_ZIP_POOL_PATH, | |||
| "learnware_folder_pool_path": LEARNWARE_FOLDER_POOL_PATH, | |||
| "learnware_folder_config": {"yaml_file": "learnware.yaml", "module_file": "__init__.py",}, | |||
| "learnware_folder_config": { | |||
| "yaml_file": "learnware.yaml", | |||
| "module_file": "__init__.py", | |||
| }, | |||
| "database_url": f"sqlite:///{DATABASE_PATH}", | |||
| "max_reduced_set_size": 1310720, | |||
| "backend_host": "http://www.lamda.nju.edu.cn/learnware/api", | |||
| @@ -31,7 +31,10 @@ def get_learnware_from_dirpath(id: str, semantic_spec: dict, learnware_dirpath: | |||
| The contructed learnware object, return None if build failed | |||
| """ | |||
| learnware_config = { | |||
| "model": {"class_name": "Model", "kwargs": {},}, | |||
| "model": { | |||
| "class_name": "Model", | |||
| "kwargs": {}, | |||
| }, | |||
| "stat_specifications": [ | |||
| { | |||
| "module_path": "learnware.specification", | |||
| @@ -302,7 +302,7 @@ class AveragingReuser(BaseReuser): | |||
| pred_y = pred_y.detach().cpu().numpy() | |||
| if not isinstance(pred_y, np.ndarray): | |||
| raise TypeError(f"Model output must be np.ndarray or torch.Tensor") | |||
| if len(pred_y.shape) == 1: | |||
| pred_y = pred_y.reshape(-1, 1) | |||
| else: | |||
| @@ -312,7 +312,7 @@ class AveragingReuser(BaseReuser): | |||
| elif self.mode == "vote_by_prob": | |||
| pred_y = softmax(pred_y, axis=-1) | |||
| preds.append(pred_y) | |||
| if self.mode == "vote_by_prob": | |||
| return np.mean(preds, axis=0) | |||
| else: | |||
| @@ -325,9 +325,9 @@ class AveragingReuser(BaseReuser): | |||
| class EnsemblePruningReuser(BaseReuser): | |||
| """ | |||
| Baseline Multiple Learnware Reuser uing Marign Distribution guided multi-objective evolutionary Ensemble Pruning (MDEP) Method. | |||
| References: [1] Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou. Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution. In: Proceedings of the 17th International Conference on Parallel Problem Solving from Nature (PPSN'22), Dortmund, Germany, 2022. | |||
| Baseline Multiple Learnware Reuser uing Marign Distribution guided multi-objective evolutionary Ensemble Pruning (MDEP) Method. | |||
| References: [1] Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou. Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution. In: Proceedings of the 17th International Conference on Parallel Problem Solving from Nature (PPSN'22), Dortmund, Germany, 2022. | |||
| """ | |||
| def __init__(self, learnware_list: List[Learnware], mode: str): | |||
| @@ -359,7 +359,7 @@ class EnsemblePruningReuser(BaseReuser): | |||
| - The ground truth of validation set. | |||
| - The dimension is (number of instances, 1). | |||
| maxgen : int | |||
| - The maximum number of iteration rounds. | |||
| - The maximum number of iteration rounds. | |||
| Returns | |||
| ------- | |||
| @@ -443,7 +443,7 @@ class EnsemblePruningReuser(BaseReuser): | |||
| - The ground truth of validation set. | |||
| - The dimension is (number of instances, 1). | |||
| maxgen : int | |||
| - The maximum number of iteration rounds. | |||
| - The maximum number of iteration rounds. | |||
| Returns | |||
| ------- | |||
| @@ -557,7 +557,7 @@ class EnsemblePruningReuser(BaseReuser): | |||
| - The ground truth of validation set. | |||
| - The dimension is (number of instances, 1). | |||
| maxgen : int | |||
| - The maximum number of iteration rounds. | |||
| - The maximum number of iteration rounds. | |||
| Returns | |||
| ------- | |||
| @@ -645,7 +645,7 @@ class EnsemblePruningReuser(BaseReuser): | |||
| def _get_predict(self, X: np.ndarray, selected_idxes: List[int]): | |||
| """Concatenate the output of learnwares corresponding to selected_idxes | |||
| Parameters | |||
| ---------- | |||
| X : np.ndarray | |||
| @@ -74,7 +74,7 @@ class Specification: | |||
| def update_stat_spec(self, *args, **kwargs): | |||
| """Update the statistical specification by the way of 'name'='value' | |||
| or use class name as default name | |||
| or use class name as default name | |||
| """ | |||
| for _v in args: | |||
| self.stat_spec[_v.__class__.__name__] = _v | |||
| @@ -428,7 +428,9 @@ class RKMEStatSpecification(BaseStatSpecification): | |||
| rkme_to_save["beta"] = rkme_to_save["beta"].tolist() | |||
| rkme_to_save["device"] = "gpu" if rkme_to_save["cuda_idx"] != -1 else "cpu" | |||
| json.dump( | |||
| rkme_to_save, codecs.open(save_path, "w", encoding="utf-8"), separators=(",", ":"), | |||
| rkme_to_save, | |||
| codecs.open(save_path, "w", encoding="utf-8"), | |||
| separators=(",", ":"), | |||
| ) | |||
| def load(self, filepath: str) -> bool: | |||
| @@ -521,7 +523,7 @@ def torch_rbf_kernel(x1, x2, gamma) -> torch.Tensor: | |||
| """ | |||
| x1 = x1.double() | |||
| x2 = x2.double() | |||
| X12norm = torch.sum(x1 ** 2, 1, keepdim=True) - 2 * x1 @ x2.T + torch.sum(x2 ** 2, 1, keepdim=True).T | |||
| X12norm = torch.sum(x1**2, 1, keepdim=True) - 2 * x1 @ x2.T + torch.sum(x2**2, 1, keepdim=True).T | |||
| return torch.exp(-X12norm * gamma) | |||
| @@ -33,7 +33,6 @@ if __name__ == "__main__": | |||
| learnware_list.append(learnware) | |||
| with LearnwaresContainer(learnware_list, zip_paths) as env_container: | |||
| learnware_list = env_container.get_learnware_list_with_container() | |||
| reuser = AveragingReuser(learnware_list, mode="vote") | |||
| input_array = np.random.randint(0, 3, size=(20, 9)) | |||
| @@ -19,7 +19,10 @@ curr_root = os.path.dirname(os.path.abspath(__file__)) | |||
| user_semantic = { | |||
| "Data": {"Values": ["Tabular"], "Type": "Class"}, | |||
| "Task": {"Values": ["Classification"], "Type": "Class",}, | |||
| "Task": { | |||
| "Values": ["Classification"], | |||
| "Type": "Class", | |||
| }, | |||
| "Library": {"Values": ["Scikit-learn"], "Type": "Class"}, | |||
| "Scenario": {"Values": ["Education"], "Type": "Tag"}, | |||
| "Description": {"Values": "", "Type": "String"}, | |||