|
- import zipfile
- import numpy as np
-
- from learnware.learnware import get_learnware_from_dirpath, Learnware
- from learnware.market import EasyMarket
- from learnware.client.container import ModelEnvContainer, LearnwaresContainer
- from learnware.learnware.reuse import AveragingReuser
-
- if __name__ == "__main__":
- semantic_specification = dict()
- semantic_specification["Data"] = {"Type": "Class", "Values": ["Text"]}
- semantic_specification["Task"] = {"Type": "Class", "Values": ["Ranking"]}
- semantic_specification["Library"] = {"Type": "Class", "Values": ["Scikit-learn"]}
- semantic_specification["Scenario"] = {"Type": "Tag", "Values": "Financial"}
- semantic_specification["Name"] = {"Type": "String", "Values": "test"}
- semantic_specification["Description"] = {"Type": "String", "Values": "test"}
-
- zip_paths = [
- "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/rf_tic.zip",
- "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/svc_tic.zip",
- ]
- dir_paths = [
- "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/rf_tic",
- "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/svc_tic",
- ]
-
- learnware_list = []
- for id, (zip_path, dir_path) in enumerate(zip(zip_paths, dir_paths)):
- with zipfile.ZipFile(zip_path, "r") as z_file:
- z_file.extractall(dir_path)
-
- learnware = get_learnware_from_dirpath(f"test_id{id}", semantic_specification, dir_path)
- learnware_list.append(learnware)
-
- with LearnwaresContainer(learnware_list, zip_paths) as env_container:
- learnware_list = env_container.get_learnware_list_with_container()
- reuser = AveragingReuser(learnware_list, mode="vote")
- input_array = np.random.randint(0, 3, size=(20, 9))
- print(reuser.predict(input_array).argmax(axis=1))
- for id, ind_learner in enumerate(learnware_list):
- print(f"learner_{id}", reuser.predict(input_array).argmax(axis=1))
|