| @@ -40,7 +40,7 @@ set(SLINTST schkaa.f | |||
| sgennd.f sqrt04.f sqrt05.f schkqrt.f serrqrt.f schkqrtp.f serrqrtp.f | |||
| schklqt.f schklqtp.f schktsqr.f | |||
| serrlqt.f serrlqtp.f serrtsqr.f stsqr01.f slqt04.f slqt05.f | |||
| schkorhr_col.f serrorhr_col.f sorhr_col01.f) | |||
| schkorhr_col.f serrorhr_col.f sorhr_col01.f sorhr_col02.f) | |||
| if(USE_XBLAS) | |||
| list(APPEND SLINTST sdrvgbx.f sdrvgex.f sdrvsyx.f sdrvpox.f | |||
| @@ -96,7 +96,7 @@ set(CLINTST cchkaa.f | |||
| cqrt04.f cqrt05.f cchkqrt.f cerrqrt.f cchkqrtp.f cerrqrtp.f | |||
| cchklqt.f cchklqtp.f cchktsqr.f | |||
| cerrlqt.f cerrlqtp.f cerrtsqr.f ctsqr01.f clqt04.f clqt05.f | |||
| cchkunhr_col.f cerrunhr_col.f cunhr_col01.f) | |||
| cchkunhr_col.f cerrunhr_col.f cunhr_col01.f cunhr_col02.f) | |||
| if(USE_XBLAS) | |||
| list(APPEND CLINTST cdrvgbx.f cdrvgex.f cdrvhex.f cdrvsyx.f cdrvpox.f | |||
| @@ -142,7 +142,7 @@ set(DLINTST dchkaa.f | |||
| dqrt04.f dqrt05.f dchkqrt.f derrqrt.f dchkqrtp.f derrqrtp.f | |||
| dchklq.f dchklqt.f dchklqtp.f dchktsqr.f | |||
| derrlqt.f derrlqtp.f derrtsqr.f dtsqr01.f dlqt04.f dlqt05.f | |||
| dchkorhr_col.f derrorhr_col.f dorhr_col01.f) | |||
| dchkorhr_col.f derrorhr_col.f dorhr_col01.f dorhr_col02.f) | |||
| if(USE_XBLAS) | |||
| list(APPEND DLINTST ddrvgbx.f ddrvgex.f ddrvsyx.f ddrvpox.f | |||
| @@ -198,7 +198,7 @@ set(ZLINTST zchkaa.f | |||
| zqrt04.f zqrt05.f zchkqrt.f zerrqrt.f zchkqrtp.f zerrqrtp.f | |||
| zchklqt.f zchklqtp.f zchktsqr.f | |||
| zerrlqt.f zerrlqtp.f zerrtsqr.f ztsqr01.f zlqt04.f zlqt05.f | |||
| zchkunhr_col.f zerrunhr_col.f zunhr_col01.f) | |||
| zchkunhr_col.f zerrunhr_col.f zunhr_col01.f zunhr_col02.f) | |||
| if(USE_XBLAS) | |||
| list(APPEND ZLINTST zdrvgbx.f zdrvgex.f zdrvhex.f zdrvsyx.f zdrvpox.f | |||
| @@ -74,7 +74,7 @@ SLINTST = schkaa.o \ | |||
| sgennd.o sqrt04.o sqrt05.o schkqrt.o serrqrt.o schkqrtp.o serrqrtp.o \ | |||
| schklqt.o schklqtp.o schktsqr.o \ | |||
| serrlqt.o serrlqtp.o serrtsqr.o stsqr01.o slqt04.o slqt05.o \ | |||
| schkorhr_col.o serrorhr_col.o sorhr_col01.o | |||
| schkorhr_col.o serrorhr_col.o sorhr_col01.o sorhr_col02.o | |||
| ifdef USEXBLAS | |||
| SLINTST += sdrvgbx.o sdrvgex.o sdrvsyx.o sdrvpox.o \ | |||
| @@ -123,7 +123,7 @@ CLINTST = cchkaa.o \ | |||
| cqrt04.o cqrt05.o cchkqrt.o cerrqrt.o cchkqrtp.o cerrqrtp.o \ | |||
| cchklqt.o cchklqtp.o cchktsqr.o \ | |||
| cerrlqt.o cerrlqtp.o cerrtsqr.o ctsqr01.o clqt04.o clqt05.o \ | |||
| cchkunhr_col.o cerrunhr_col.o cunhr_col01.o | |||
| cchkunhr_col.o cerrunhr_col.o cunhr_col01.o cunhr_col02.o | |||
| ifdef USEXBLAS | |||
| CLINTST += cdrvgbx.o cdrvgex.o cdrvhex.o cdrvsyx.o cdrvpox.o \ | |||
| @@ -167,7 +167,7 @@ DLINTST = dchkaa.o \ | |||
| dqrt04.o dqrt05.o dchkqrt.o derrqrt.o dchkqrtp.o derrqrtp.o \ | |||
| dchklq.o dchklqt.o dchklqtp.o dchktsqr.o \ | |||
| derrlqt.o derrlqtp.o derrtsqr.o dtsqr01.o dlqt04.o dlqt05.o \ | |||
| dchkorhr_col.o derrorhr_col.o dorhr_col01.o | |||
| dchkorhr_col.o derrorhr_col.o dorhr_col01.o dorhr_col02.o | |||
| ifdef USEXBLAS | |||
| DLINTST += ddrvgbx.o ddrvgex.o ddrvsyx.o ddrvpox.o \ | |||
| @@ -215,7 +215,7 @@ ZLINTST = zchkaa.o \ | |||
| zqrt04.o zqrt05.o zchkqrt.o zerrqrt.o zchkqrtp.o zerrqrtp.o \ | |||
| zchklqt.o zchklqtp.o zchktsqr.o \ | |||
| zerrlqt.o zerrlqtp.o zerrtsqr.o ztsqr01.o zlqt04.o zlqt05.o \ | |||
| zchkunhr_col.o zerrunhr_col.o zunhr_col01.o | |||
| zchkunhr_col.o zerrunhr_col.o zunhr_col01.o zunhr_col02.o | |||
| ifdef USEXBLAS | |||
| ZLINTST += zdrvgbx.o zdrvgex.o zdrvhex.o zdrvsyx.o zdrvpox.o \ | |||
| @@ -24,9 +24,12 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CCHKUNHR_COL tests CUNHR_COL using CLATSQR and CGEMQRT. Therefore, CLATSQR | |||
| *> (used in CGEQR) and CGEMQRT (used in CGEMQR) have to be tested | |||
| *> before this test. | |||
| *> CCHKUNHR_COL tests: | |||
| *> 1) CUNGTSQR and CUNHR_COL using CLATSQR, CGEMQRT, | |||
| *> 2) CUNGTSQR_ROW and CUNHR_COL inside CGETSQRHRT | |||
| *> (which calls CLATSQR, CUNGTSQR_ROW and CUNHR_COL) using CGEMQRT. | |||
| *> Therefore, CLATSQR (part of CGEQR), CGEMQRT (part of CGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| @@ -97,19 +100,16 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup complex_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE CCHKUNHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, | |||
| $ NBVAL, NOUT ) | |||
| SUBROUTINE CCHKUNHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, | |||
| $ NNB, NBVAL, NOUT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.7.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * December 2016 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| LOGICAL TSTERR | |||
| @@ -135,10 +135,11 @@ | |||
| REAL RESULT( NTESTS ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ALAHD, ALASUM, CERRUNHR_COL, CUNHR_COL01 | |||
| EXTERNAL ALAHD, ALASUM, CERRUNHR_COL, CUNHR_COL01, | |||
| $ CUNHR_COL02 | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC MAX, MIN | |||
| INTRINSIC MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| LOGICAL LERR, OK | |||
| @@ -201,8 +202,8 @@ | |||
| * | |||
| * Test CUNHR_COL | |||
| * | |||
| CALL CUNHR_COL01( M, N, MB1, NB1, NB2, | |||
| $ RESULT ) | |||
| CALL CUNHR_COL01( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| @@ -226,12 +227,78 @@ | |||
| END DO | |||
| END DO | |||
| * | |||
| * Do for each value of M in MVAL. | |||
| * | |||
| DO I = 1, NM | |||
| M = MVAL( I ) | |||
| * | |||
| * Do for each value of N in NVAL. | |||
| * | |||
| DO J = 1, NN | |||
| N = NVAL( J ) | |||
| * | |||
| * Only for M >= N | |||
| * | |||
| IF ( MIN( M, N ).GT.0 .AND. M.GE.N ) THEN | |||
| * | |||
| * Do for each possible value of MB1 | |||
| * | |||
| DO IMB1 = 1, NNB | |||
| MB1 = NBVAL( IMB1 ) | |||
| * | |||
| * Only for MB1 > N | |||
| * | |||
| IF ( MB1.GT.N ) THEN | |||
| * | |||
| * Do for each possible value of NB1 | |||
| * | |||
| DO INB1 = 1, NNB | |||
| NB1 = NBVAL( INB1 ) | |||
| * | |||
| * Do for each possible value of NB2 | |||
| * | |||
| DO INB2 = 1, NNB | |||
| NB2 = NBVAL( INB2 ) | |||
| * | |||
| IF( NB1.GT.0 .AND. NB2.GT.0 ) THEN | |||
| * | |||
| * Test CUNHR_COL | |||
| * | |||
| CALL CUNHR_COL02( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| * | |||
| DO T = 1, NTESTS | |||
| IF( RESULT( T ).GE.THRESH ) THEN | |||
| IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) | |||
| $ CALL ALAHD( NOUT, PATH ) | |||
| WRITE( NOUT, FMT = 9998 ) M, N, MB1, | |||
| $ NB1, NB2, T, RESULT( T ) | |||
| NFAIL = NFAIL + 1 | |||
| END IF | |||
| END DO | |||
| NRUN = NRUN + NTESTS | |||
| END IF | |||
| END DO | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END DO | |||
| * | |||
| * Print a summary of the results. | |||
| * | |||
| CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) | |||
| * | |||
| 9999 FORMAT( 'M=', I5, ', N=', I5, ', MB1=', I5, | |||
| $ ', NB1=', I5, ', NB2=', I5,' test(', I2, ')=', G12.5 ) | |||
| 9999 FORMAT( 'CUNGTSQR and CUNHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| 9998 FORMAT( 'CUNGTSQR_ROW and CUNHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| RETURN | |||
| * | |||
| * End of CCHKUNHR_COL | |||
| @@ -13,7 +13,7 @@ | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * REAL RESULT(6) | |||
| * DOUBLE PRECISION RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| @@ -21,8 +21,8 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CUNHR_COL01 tests CUNHR_COL using CLATSQR, CGEMQRT and CUNGTSQR. | |||
| *> Therefore, CLATSQR (part of CGEQR), CGEMQRT (part CGEMQR), CUNGTSQR | |||
| *> CUNHR_COL01 tests CUNGTSQR and CUNHR_COL using CLATSQR, CGEMQRT. | |||
| *> Therefore, CLATSQR (part of CGEQR), CGEMQRT (part of CGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| @@ -62,14 +62,46 @@ | |||
| *> \verbatim | |||
| *> RESULT is REAL array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> ( C is a M-by-N random matrix, D is a N-by-M random matrix ) | |||
| *> | |||
| *> RESULT(1) = | A - Q * R | / (eps * m * |A|) | |||
| *> RESULT(2) = | I - (Q**H) * Q | / (eps * m ) | |||
| *> RESULT(3) = | Q * C - Q * C | / (eps * m * |C|) | |||
| *> RESULT(4) = | (Q**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> RESULT(5) = | (D * Q) - D * Q | / (eps * m * |D|) | |||
| *> RESULT(6) = | D * (Q**H) - D * (Q**H) | / (eps * m * |D|) | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m unitary Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in CGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m unitary matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using CGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using CGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| @@ -80,18 +112,15 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup complex16_lin | |||
| *> \ingroup complex_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE CUNHR_COL01( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.9.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * November 2019 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| @@ -102,10 +131,10 @@ | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| COMPLEX, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| COMPLEX , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| REAL, ALLOCATABLE :: RWORK(:) | |||
| REAL , ALLOCATABLE :: RWORK(:) | |||
| * | |||
| * .. Parameters .. | |||
| REAL ZERO | |||
| @@ -218,7 +247,7 @@ | |||
| * Copy the factor R into the array R. | |||
| * | |||
| SRNAMT = 'CLACPY' | |||
| CALL CLACPY( 'U', M, N, AF, M, R, M ) | |||
| CALL CLACPY( 'U', N, N, AF, M, R, M ) | |||
| * | |||
| * Reconstruct the orthogonal matrix Q. | |||
| * | |||
| @@ -240,7 +269,7 @@ | |||
| * matrix S. | |||
| * | |||
| SRNAMT = 'CLACPY' | |||
| CALL CLACPY( 'U', M, N, R, M, AF, M ) | |||
| CALL CLACPY( 'U', N, N, R, M, AF, M ) | |||
| * | |||
| DO I = 1, N | |||
| IF( DIAG( I ).EQ.-CONE ) THEN | |||
| @@ -0,0 +1,381 @@ | |||
| *> \brief \b CUNHR_COL02 | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE CUNHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * REAL RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CUNHR_COL02 tests CUNGTSQR_ROW and CUNHR_COL inside CGETSQRHRT | |||
| *> (which calls CLATSQR, CUNGTSQR_ROW and CUNHR_COL) using CGEMQRT. | |||
| *> Therefore, CLATSQR (part of CGEQR), CGEMQRT (part of CGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> Number of rows in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> Number of columns in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> Number of row in row block in an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> Number of columns in column block an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> Number of columns in column block in an output test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RESULT | |||
| *> \verbatim | |||
| *> RESULT is REAL array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m unitary Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in CGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m unitary matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using CGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using CGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complex_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE CUNHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| REAL RESULT(6) | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| COMPLEX , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| REAL , ALLOCATABLE :: RWORK(:) | |||
| * | |||
| * .. Parameters .. | |||
| REAL ZERO | |||
| PARAMETER ( ZERO = 0.0E+0 ) | |||
| COMPLEX CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), | |||
| $ CZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL TESTZEROS | |||
| INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB | |||
| REAL ANORM, EPS, RESID, CNORM, DNORM | |||
| * .. | |||
| * .. Local Arrays .. | |||
| INTEGER ISEED( 4 ) | |||
| COMPLEX WORKQUERY( 1 ) | |||
| * .. | |||
| * .. External Functions .. | |||
| REAL SLAMCH, CLANGE, CLANSY | |||
| EXTERNAL SLAMCH, CLANGE, CLANSY | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CLACPY, CLARNV, CLASET, CGETSQRHRT, | |||
| $ CSCAL, CGEMM, CGEMQRT, CHERK | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, REAL, MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| CHARACTER(LEN=32) SRNAMT | |||
| * .. | |||
| * .. Common blocks .. | |||
| COMMON / SRMNAMC / SRNAMT | |||
| * .. | |||
| * .. Data statements .. | |||
| DATA ISEED / 1988, 1989, 1990, 1991 / | |||
| * | |||
| * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS | |||
| * | |||
| TESTZEROS = .FALSE. | |||
| * | |||
| EPS = SLAMCH( 'Epsilon' ) | |||
| K = MIN( M, N ) | |||
| L = MAX( M, N, 1) | |||
| * | |||
| * Dynamically allocate local arrays | |||
| * | |||
| ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L), | |||
| $ C(M,N), CF(M,N), | |||
| $ D(N,M), DF(N,M) ) | |||
| * | |||
| * Put random numbers into A and copy to AF | |||
| * | |||
| DO J = 1, N | |||
| CALL CLARNV( 2, ISEED, M, A( 1, J ) ) | |||
| END DO | |||
| IF( TESTZEROS ) THEN | |||
| IF( M.GE.4 ) THEN | |||
| DO J = 1, N | |||
| CALL CLARNV( 2, ISEED, M/2, A( M/4, J ) ) | |||
| END DO | |||
| END IF | |||
| END IF | |||
| CALL CLACPY( 'Full', M, N, A, M, AF, M ) | |||
| * | |||
| * Number of row blocks in CLATSQR | |||
| * | |||
| NRB = MAX( 1, CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) | |||
| * | |||
| ALLOCATE ( T1( NB1, N * NRB ) ) | |||
| ALLOCATE ( T2( NB2, N ) ) | |||
| ALLOCATE ( DIAG( N ) ) | |||
| * | |||
| * Begin determine LWORK for the array WORK and allocate memory. | |||
| * | |||
| * CGEMQRT requires NB2 to be bounded by N. | |||
| * | |||
| NB2_UB = MIN( NB2, N) | |||
| * | |||
| * | |||
| CALL CGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORKQUERY, -1, INFO ) | |||
| * | |||
| LWORK = INT( WORKQUERY( 1 ) ) | |||
| * | |||
| * In CGEMQRT, WORK is N*NB2_UB if SIDE = 'L', | |||
| * or M*NB2_UB if SIDE = 'R'. | |||
| * | |||
| LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M ) | |||
| * | |||
| ALLOCATE ( WORK( LWORK ) ) | |||
| * | |||
| * End allocate memory for WORK. | |||
| * | |||
| * | |||
| * Begin Householder reconstruction routines | |||
| * | |||
| * Factor the matrix A in the array AF. | |||
| * | |||
| SRNAMT = 'CGETSQRHRT' | |||
| CALL CGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORK, LWORK, INFO ) | |||
| * | |||
| * End Householder reconstruction routines. | |||
| * | |||
| * | |||
| * Generate the m-by-m matrix Q | |||
| * | |||
| CALL CLASET( 'Full', M, M, CZERO, CONE, Q, M ) | |||
| * | |||
| SRNAMT = 'CGEMQRT' | |||
| CALL CGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * Copy R | |||
| * | |||
| CALL CLASET( 'Full', M, N, CZERO, CZERO, R, M ) | |||
| * | |||
| CALL CLACPY( 'Upper', M, N, AF, M, R, M ) | |||
| * | |||
| * TEST 1 | |||
| * Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1) | |||
| * | |||
| CALL CGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M ) | |||
| * | |||
| ANORM = CLANGE( '1', M, N, A, M, RWORK ) | |||
| RESID = CLANGE( '1', M, N, R, M, RWORK ) | |||
| IF( ANORM.GT.ZERO ) THEN | |||
| RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM ) | |||
| ELSE | |||
| RESULT( 1 ) = ZERO | |||
| END IF | |||
| * | |||
| * TEST 2 | |||
| * Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2) | |||
| * | |||
| CALL CLASET( 'Full', M, M, CZERO, CONE, R, M ) | |||
| CALL CHERK( 'U', 'C', M, M, -CONE, Q, M, CONE, R, M ) | |||
| RESID = CLANSY( '1', 'Upper', M, R, M, RWORK ) | |||
| RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) ) | |||
| * | |||
| * Generate random m-by-n matrix C | |||
| * | |||
| DO J = 1, N | |||
| CALL CLARNV( 2, ISEED, M, C( 1, J ) ) | |||
| END DO | |||
| CNORM = CLANGE( '1', M, N, C, M, RWORK ) | |||
| CALL CLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as Q*C = CF | |||
| * | |||
| SRNAMT = 'CGEMQRT' | |||
| CALL CGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 3 | |||
| * Compute |CF - Q*C| / ( eps * m * |C| ) | |||
| * | |||
| CALL CGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M ) | |||
| RESID = CLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 3 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy C into CF again | |||
| * | |||
| CALL CLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as (Q**T)*C = CF | |||
| * | |||
| SRNAMT = 'CGEMQRT' | |||
| CALL CGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 4 | |||
| * Compute |CF - (Q**T)*C| / ( eps * m * |C|) | |||
| * | |||
| CALL CGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M ) | |||
| RESID = CLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 4 ) = ZERO | |||
| END IF | |||
| * | |||
| * Generate random n-by-m matrix D and a copy DF | |||
| * | |||
| DO J = 1, M | |||
| CALL CLARNV( 2, ISEED, N, D( 1, J ) ) | |||
| END DO | |||
| DNORM = CLANGE( '1', N, M, D, N, RWORK ) | |||
| CALL CLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*Q = DF | |||
| * | |||
| SRNAMT = 'CGEMQRT' | |||
| CALL CGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 5 | |||
| * Compute |DF - D*Q| / ( eps * m * |D| ) | |||
| * | |||
| CALL CGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N ) | |||
| RESID = CLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 5 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy D into DF again | |||
| * | |||
| CALL CLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*QT = DF | |||
| * | |||
| SRNAMT = 'CGEMQRT' | |||
| CALL CGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 6 | |||
| * Compute |DF - D*(Q**T)| / ( eps * m * |D| ) | |||
| * | |||
| CALL CGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N ) | |||
| RESID = CLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 6 ) = ZERO | |||
| END IF | |||
| * | |||
| * Deallocate all arrays | |||
| * | |||
| DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG, | |||
| $ C, D, CF, DF ) | |||
| * | |||
| RETURN | |||
| * | |||
| * End of CUNHR_COL02 | |||
| * | |||
| END | |||
| @@ -24,9 +24,12 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DCHKORHR_COL tests DORHR_COL using DLATSQR and DGEMQRT. Therefore, DLATSQR | |||
| *> (used in DGEQR) and DGEMQRT (used in DGEMQR) have to be tested | |||
| *> before this test. | |||
| *> DCHKORHR_COL tests: | |||
| *> 1) DORGTSQR and DORHR_COL using DLATSQR, DGEMQRT, | |||
| *> 2) DORGTSQR_ROW and DORHR_COL inside DGETSQRHRT | |||
| *> (which calls DLATSQR, DORGTSQR_ROW and DORHR_COL) using DGEMQRT. | |||
| *> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part of DGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| @@ -97,19 +100,16 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup double_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE DCHKORHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, | |||
| $ NBVAL, NOUT ) | |||
| SUBROUTINE DCHKORHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, | |||
| $ NNB, NBVAL, NOUT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.7.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * December 2016 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| LOGICAL TSTERR | |||
| @@ -135,10 +135,11 @@ | |||
| DOUBLE PRECISION RESULT( NTESTS ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ALAHD, ALASUM, DERRORHR_COL, DORHR_COL01 | |||
| EXTERNAL ALAHD, ALASUM, DERRORHR_COL, DORHR_COL01, | |||
| $ DORHR_COL02 | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC MAX, MIN | |||
| INTRINSIC MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| LOGICAL LERR, OK | |||
| @@ -201,8 +202,8 @@ | |||
| * | |||
| * Test DORHR_COL | |||
| * | |||
| CALL DORHR_COL01( M, N, MB1, NB1, NB2, | |||
| $ RESULT ) | |||
| CALL DORHR_COL01( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| @@ -226,12 +227,78 @@ | |||
| END DO | |||
| END DO | |||
| * | |||
| * Do for each value of M in MVAL. | |||
| * | |||
| DO I = 1, NM | |||
| M = MVAL( I ) | |||
| * | |||
| * Do for each value of N in NVAL. | |||
| * | |||
| DO J = 1, NN | |||
| N = NVAL( J ) | |||
| * | |||
| * Only for M >= N | |||
| * | |||
| IF ( MIN( M, N ).GT.0 .AND. M.GE.N ) THEN | |||
| * | |||
| * Do for each possible value of MB1 | |||
| * | |||
| DO IMB1 = 1, NNB | |||
| MB1 = NBVAL( IMB1 ) | |||
| * | |||
| * Only for MB1 > N | |||
| * | |||
| IF ( MB1.GT.N ) THEN | |||
| * | |||
| * Do for each possible value of NB1 | |||
| * | |||
| DO INB1 = 1, NNB | |||
| NB1 = NBVAL( INB1 ) | |||
| * | |||
| * Do for each possible value of NB2 | |||
| * | |||
| DO INB2 = 1, NNB | |||
| NB2 = NBVAL( INB2 ) | |||
| * | |||
| IF( NB1.GT.0 .AND. NB2.GT.0 ) THEN | |||
| * | |||
| * Test DORHR_COL | |||
| * | |||
| CALL DORHR_COL02( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| * | |||
| DO T = 1, NTESTS | |||
| IF( RESULT( T ).GE.THRESH ) THEN | |||
| IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) | |||
| $ CALL ALAHD( NOUT, PATH ) | |||
| WRITE( NOUT, FMT = 9998 ) M, N, MB1, | |||
| $ NB1, NB2, T, RESULT( T ) | |||
| NFAIL = NFAIL + 1 | |||
| END IF | |||
| END DO | |||
| NRUN = NRUN + NTESTS | |||
| END IF | |||
| END DO | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END DO | |||
| * | |||
| * Print a summary of the results. | |||
| * | |||
| CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) | |||
| * | |||
| 9999 FORMAT( 'M=', I5, ', N=', I5, ', MB1=', I5, | |||
| $ ', NB1=', I5, ', NB2=', I5,' test(', I2, ')=', G12.5 ) | |||
| 9999 FORMAT( 'DORGTSQR and DORHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| 9998 FORMAT( 'DORGTSQR_ROW and DORHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| RETURN | |||
| * | |||
| * End of DCHKORHR_COL | |||
| @@ -21,8 +21,8 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DORHR_COL01 tests DORHR_COL using DLATSQR, DGEMQRT and DORGTSQR. | |||
| *> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part DGEMQR), DORGTSQR | |||
| *> DORHR_COL01 tests DORGTSQR and DORHR_COL using DLATSQR, DGEMQRT. | |||
| *> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part of DGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| @@ -62,14 +62,46 @@ | |||
| *> \verbatim | |||
| *> RESULT is DOUBLE PRECISION array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> ( C is a M-by-N random matrix, D is a N-by-M random matrix ) | |||
| *> | |||
| *> RESULT(1) = | A - Q * R | / (eps * m * |A|) | |||
| *> RESULT(2) = | I - (Q**H) * Q | / (eps * m ) | |||
| *> RESULT(3) = | Q * C - Q * C | / (eps * m * |C|) | |||
| *> RESULT(4) = | (Q**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> RESULT(5) = | (D * Q) - D * Q | / (eps * m * |D|) | |||
| *> RESULT(6) = | D * (Q**H) - D * (Q**H) | / (eps * m * |D|) | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m orthogonal Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in ZGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using DGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using DGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| @@ -80,18 +112,15 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup single_lin | |||
| *> \ingroup double_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE DORHR_COL01( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.9.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * November 2019 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| @@ -0,0 +1,377 @@ | |||
| *> \brief \b DORHR_COL02 | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE DORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * DOUBLE PRECISION RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DORHR_COL02 tests DORGTSQR_ROW and DORHR_COL inside DGETSQRHRT | |||
| *> (which calls DLATSQR, DORGTSQR_ROW and DORHR_COL) using DGEMQRT. | |||
| *> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part of DGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> Number of rows in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> Number of columns in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> Number of row in row block in an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> Number of columns in column block an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> Number of columns in column block in an output test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RESULT | |||
| *> \verbatim | |||
| *> RESULT is DOUBLE PRECISION array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m orthogonal Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in ZGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using DGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using DGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup double_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE DORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| DOUBLE PRECISION RESULT(6) | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| DOUBLE PRECISION, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ONE, ZERO | |||
| PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL TESTZEROS | |||
| INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB | |||
| DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM | |||
| * .. | |||
| * .. Local Arrays .. | |||
| INTEGER ISEED( 4 ) | |||
| DOUBLE PRECISION WORKQUERY( 1 ) | |||
| * .. | |||
| * .. External Functions .. | |||
| DOUBLE PRECISION DLAMCH, DLANGE, DLANSY | |||
| EXTERNAL DLAMCH, DLANGE, DLANSY | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL DLACPY, DLARNV, DLASET, DGETSQRHRT, | |||
| $ DSCAL, DGEMM, DGEMQRT, DSYRK | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, DBLE, MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| CHARACTER(LEN=32) SRNAMT | |||
| * .. | |||
| * .. Common blocks .. | |||
| COMMON / SRMNAMC / SRNAMT | |||
| * .. | |||
| * .. Data statements .. | |||
| DATA ISEED / 1988, 1989, 1990, 1991 / | |||
| * | |||
| * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS | |||
| * | |||
| TESTZEROS = .FALSE. | |||
| * | |||
| EPS = DLAMCH( 'Epsilon' ) | |||
| K = MIN( M, N ) | |||
| L = MAX( M, N, 1) | |||
| * | |||
| * Dynamically allocate local arrays | |||
| * | |||
| ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L), | |||
| $ C(M,N), CF(M,N), | |||
| $ D(N,M), DF(N,M) ) | |||
| * | |||
| * Put random numbers into A and copy to AF | |||
| * | |||
| DO J = 1, N | |||
| CALL DLARNV( 2, ISEED, M, A( 1, J ) ) | |||
| END DO | |||
| IF( TESTZEROS ) THEN | |||
| IF( M.GE.4 ) THEN | |||
| DO J = 1, N | |||
| CALL DLARNV( 2, ISEED, M/2, A( M/4, J ) ) | |||
| END DO | |||
| END IF | |||
| END IF | |||
| CALL DLACPY( 'Full', M, N, A, M, AF, M ) | |||
| * | |||
| * Number of row blocks in DLATSQR | |||
| * | |||
| NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) ) | |||
| * | |||
| ALLOCATE ( T1( NB1, N * NRB ) ) | |||
| ALLOCATE ( T2( NB2, N ) ) | |||
| ALLOCATE ( DIAG( N ) ) | |||
| * | |||
| * Begin determine LWORK for the array WORK and allocate memory. | |||
| * | |||
| * DGEMQRT requires NB2 to be bounded by N. | |||
| * | |||
| NB2_UB = MIN( NB2, N) | |||
| * | |||
| * | |||
| CALL DGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORKQUERY, -1, INFO ) | |||
| * | |||
| LWORK = INT( WORKQUERY( 1 ) ) | |||
| * | |||
| * In DGEMQRT, WORK is N*NB2_UB if SIDE = 'L', | |||
| * or M*NB2_UB if SIDE = 'R'. | |||
| * | |||
| LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M ) | |||
| * | |||
| ALLOCATE ( WORK( LWORK ) ) | |||
| * | |||
| * End allocate memory for WORK. | |||
| * | |||
| * | |||
| * Begin Householder reconstruction routines | |||
| * | |||
| * Factor the matrix A in the array AF. | |||
| * | |||
| SRNAMT = 'DGETSQRHRT' | |||
| CALL DGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORK, LWORK, INFO ) | |||
| * | |||
| * End Householder reconstruction routines. | |||
| * | |||
| * | |||
| * Generate the m-by-m matrix Q | |||
| * | |||
| CALL DLASET( 'Full', M, M, ZERO, ONE, Q, M ) | |||
| * | |||
| SRNAMT = 'DGEMQRT' | |||
| CALL DGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * Copy R | |||
| * | |||
| CALL DLASET( 'Full', M, N, ZERO, ZERO, R, M ) | |||
| * | |||
| CALL DLACPY( 'Upper', M, N, AF, M, R, M ) | |||
| * | |||
| * TEST 1 | |||
| * Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1) | |||
| * | |||
| CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M ) | |||
| * | |||
| ANORM = DLANGE( '1', M, N, A, M, RWORK ) | |||
| RESID = DLANGE( '1', M, N, R, M, RWORK ) | |||
| IF( ANORM.GT.ZERO ) THEN | |||
| RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM ) | |||
| ELSE | |||
| RESULT( 1 ) = ZERO | |||
| END IF | |||
| * | |||
| * TEST 2 | |||
| * Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2) | |||
| * | |||
| CALL DLASET( 'Full', M, M, ZERO, ONE, R, M ) | |||
| CALL DSYRK( 'U', 'T', M, M, -ONE, Q, M, ONE, R, M ) | |||
| RESID = DLANSY( '1', 'Upper', M, R, M, RWORK ) | |||
| RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) ) | |||
| * | |||
| * Generate random m-by-n matrix C | |||
| * | |||
| DO J = 1, N | |||
| CALL DLARNV( 2, ISEED, M, C( 1, J ) ) | |||
| END DO | |||
| CNORM = DLANGE( '1', M, N, C, M, RWORK ) | |||
| CALL DLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as Q*C = CF | |||
| * | |||
| SRNAMT = 'DGEMQRT' | |||
| CALL DGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 3 | |||
| * Compute |CF - Q*C| / ( eps * m * |C| ) | |||
| * | |||
| CALL DGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) | |||
| RESID = DLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 3 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy C into CF again | |||
| * | |||
| CALL DLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as (Q**T)*C = CF | |||
| * | |||
| SRNAMT = 'DGEMQRT' | |||
| CALL DGEMQRT( 'L', 'T', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 4 | |||
| * Compute |CF - (Q**T)*C| / ( eps * m * |C|) | |||
| * | |||
| CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) | |||
| RESID = DLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 4 ) = ZERO | |||
| END IF | |||
| * | |||
| * Generate random n-by-m matrix D and a copy DF | |||
| * | |||
| DO J = 1, M | |||
| CALL DLARNV( 2, ISEED, N, D( 1, J ) ) | |||
| END DO | |||
| DNORM = DLANGE( '1', N, M, D, N, RWORK ) | |||
| CALL DLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*Q = DF | |||
| * | |||
| SRNAMT = 'DGEMQRT' | |||
| CALL DGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 5 | |||
| * Compute |DF - D*Q| / ( eps * m * |D| ) | |||
| * | |||
| CALL DGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) | |||
| RESID = DLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 5 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy D into DF again | |||
| * | |||
| CALL DLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*QT = DF | |||
| * | |||
| SRNAMT = 'DGEMQRT' | |||
| CALL DGEMQRT( 'R', 'T', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 6 | |||
| * Compute |DF - D*(Q**T)| / ( eps * m * |D| ) | |||
| * | |||
| CALL DGEMM( 'N', 'T', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) | |||
| RESID = DLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 6 ) = ZERO | |||
| END IF | |||
| * | |||
| * Deallocate all arrays | |||
| * | |||
| DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG, | |||
| $ C, D, CF, DF ) | |||
| * | |||
| RETURN | |||
| * | |||
| * End of DORHR_COL02 | |||
| * | |||
| END | |||
| @@ -24,8 +24,11 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SCHKORHR_COL tests SORHR_COL using SLATSQR, SGEMQRT and SORGTSQR. | |||
| *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part SGEMQR), SORGTSQR | |||
| *> SCHKORHR_COL tests: | |||
| *> 1) SORGTSQR and SORHR_COL using SLATSQR, SGEMQRT, | |||
| *> 2) SORGTSQR_ROW and SORHR_COL inside DGETSQRHRT | |||
| *> (which calls SLATSQR, SORGTSQR_ROW and SORHR_COL) using SGEMQRT. | |||
| *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part of SGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| @@ -97,19 +100,16 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup sigle_lin | |||
| *> \ingroup single_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE SCHKORHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, | |||
| $ NBVAL, NOUT ) | |||
| SUBROUTINE SCHKORHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, | |||
| $ NNB, NBVAL, NOUT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.9.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * June 2019 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| LOGICAL TSTERR | |||
| @@ -135,7 +135,8 @@ | |||
| REAL RESULT( NTESTS ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ALAHD, ALASUM, SERRORHR_COL, SORHR_COL01 | |||
| EXTERNAL ALAHD, ALASUM, SERRORHR_COL, SORHR_COL01, | |||
| $ SORHR_COL02 | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC MAX, MIN | |||
| @@ -201,8 +202,8 @@ | |||
| * | |||
| * Test SORHR_COL | |||
| * | |||
| CALL SORHR_COL01( M, N, MB1, NB1, NB2, | |||
| $ RESULT ) | |||
| CALL SORHR_COL01( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| @@ -226,12 +227,78 @@ | |||
| END DO | |||
| END DO | |||
| * | |||
| * Do for each value of M in MVAL. | |||
| * | |||
| DO I = 1, NM | |||
| M = MVAL( I ) | |||
| * | |||
| * Do for each value of N in NVAL. | |||
| * | |||
| DO J = 1, NN | |||
| N = NVAL( J ) | |||
| * | |||
| * Only for M >= N | |||
| * | |||
| IF ( MIN( M, N ).GT.0 .AND. M.GE.N ) THEN | |||
| * | |||
| * Do for each possible value of MB1 | |||
| * | |||
| DO IMB1 = 1, NNB | |||
| MB1 = NBVAL( IMB1 ) | |||
| * | |||
| * Only for MB1 > N | |||
| * | |||
| IF ( MB1.GT.N ) THEN | |||
| * | |||
| * Do for each possible value of NB1 | |||
| * | |||
| DO INB1 = 1, NNB | |||
| NB1 = NBVAL( INB1 ) | |||
| * | |||
| * Do for each possible value of NB2 | |||
| * | |||
| DO INB2 = 1, NNB | |||
| NB2 = NBVAL( INB2 ) | |||
| * | |||
| IF( NB1.GT.0 .AND. NB2.GT.0 ) THEN | |||
| * | |||
| * Test SORHR_COL | |||
| * | |||
| CALL SORHR_COL02( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| * | |||
| DO T = 1, NTESTS | |||
| IF( RESULT( T ).GE.THRESH ) THEN | |||
| IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) | |||
| $ CALL ALAHD( NOUT, PATH ) | |||
| WRITE( NOUT, FMT = 9998 ) M, N, MB1, | |||
| $ NB1, NB2, T, RESULT( T ) | |||
| NFAIL = NFAIL + 1 | |||
| END IF | |||
| END DO | |||
| NRUN = NRUN + NTESTS | |||
| END IF | |||
| END DO | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END DO | |||
| * | |||
| * Print a summary of the results. | |||
| * | |||
| CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) | |||
| * | |||
| 9999 FORMAT( 'M=', I5, ', N=', I5, ', MB1=', I5, | |||
| $ ', NB1=', I5, ', NB2=', I5,' test(', I2, ')=', G12.5 ) | |||
| 9999 FORMAT( 'SORGTSQR and SORHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| 9998 FORMAT( 'SORGTSQR_ROW and SORHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| RETURN | |||
| * | |||
| * End of SCHKORHR_COL | |||
| @@ -8,12 +8,12 @@ | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE SORHR_COL01( M, N, MB1, NB1, NB2, RESULT) | |||
| * SUBROUTINE SORHR_COL01( M, N, MB1, NB1, NB2, RESULT ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * REAL RESULT(6) | |||
| * REAL RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| @@ -21,8 +21,8 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SORHR_COL01 tests SORHR_COL using SLATSQR, SGEMQRT and SORGTSQR. | |||
| *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part SGEMQR), SORGTSQR | |||
| *> SORHR_COL01 tests SORGTSQR and SORHR_COL using SLATSQR, SGEMQRT. | |||
| *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part of SGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| @@ -62,14 +62,46 @@ | |||
| *> \verbatim | |||
| *> RESULT is REAL array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> ( C is a M-by-N random matrix, D is a N-by-M random matrix ) | |||
| *> | |||
| *> RESULT(1) = | A - Q * R | / (eps * m * |A|) | |||
| *> RESULT(2) = | I - (Q**H) * Q | / (eps * m ) | |||
| *> RESULT(3) = | Q * C - Q * C | / (eps * m * |C|) | |||
| *> RESULT(4) = | (Q**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> RESULT(5) = | (D * Q) - D * Q | / (eps * m * |D|) | |||
| *> RESULT(6) = | D * (Q**H) - D * (Q**H) | / (eps * m * |D|) | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m orthogonal Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in SGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using SGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using SGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| @@ -80,18 +112,15 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup single_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE SORHR_COL01( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.9.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * November 2019 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| @@ -102,7 +131,7 @@ | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| REAL, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| REAL , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| * | |||
| @@ -128,7 +157,7 @@ | |||
| $ SORGTSQR, SSCAL, SGEMM, SGEMQRT, SSYRK | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, MAX, MIN, REAL | |||
| INTRINSIC CEILING, REAL, MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| CHARACTER(LEN=32) SRNAMT | |||
| @@ -230,7 +259,7 @@ | |||
| * | |||
| * Compute the factor R_hr corresponding to the Householder | |||
| * reconstructed Q_hr and place it in the upper triangle of AF to | |||
| * match the Q storage format in DGEQRT. R_hr = R_tsqr * S, | |||
| * match the Q storage format in SGEQRT. R_hr = R_tsqr * S, | |||
| * this means changing the sign of I-th row of the matrix R_tsqr | |||
| * according to sign of of I-th diagonal element DIAG(I) of the | |||
| * matrix S. | |||
| @@ -0,0 +1,376 @@ | |||
| *> \brief \b SORHR_COL02 | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE SORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * REAL RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SORHR_COL02 tests SORGTSQR_ROW and SORHR_COL inside SGETSQRHRT | |||
| *> (which calls SLATSQR, SORGTSQR_ROW and SORHR_COL) using SGEMQRT. | |||
| *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part of SGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> Number of rows in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> Number of columns in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> Number of row in row block in an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> Number of columns in column block an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> Number of columns in column block in an output test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RESULT | |||
| *> \verbatim | |||
| *> RESULT is REAL array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m orthogonal Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in SGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using SGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using SGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup single_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE SORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| REAL RESULT(6) | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| REAL , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| * | |||
| * .. Parameters .. | |||
| REAL ONE, ZERO | |||
| PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL TESTZEROS | |||
| INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB | |||
| REAL ANORM, EPS, RESID, CNORM, DNORM | |||
| * .. | |||
| * .. Local Arrays .. | |||
| INTEGER ISEED( 4 ) | |||
| REAL WORKQUERY( 1 ) | |||
| * .. | |||
| * .. External Functions .. | |||
| REAL SLAMCH, SLANGE, SLANSY | |||
| EXTERNAL SLAMCH, SLANGE, SLANSY | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL SLACPY, SLARNV, SLASET, SGETSQRHRT, | |||
| $ SSCAL, SGEMM, SGEMQRT, SSYRK | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, REAL, MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| CHARACTER(LEN=32) SRNAMT | |||
| * .. | |||
| * .. Common blocks .. | |||
| COMMON / SRMNAMC / SRNAMT | |||
| * .. | |||
| * .. Data statements .. | |||
| DATA ISEED / 1988, 1989, 1990, 1991 / | |||
| * | |||
| * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS | |||
| * | |||
| TESTZEROS = .FALSE. | |||
| * | |||
| EPS = SLAMCH( 'Epsilon' ) | |||
| K = MIN( M, N ) | |||
| L = MAX( M, N, 1) | |||
| * | |||
| * Dynamically allocate local arrays | |||
| * | |||
| ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L), | |||
| $ C(M,N), CF(M,N), | |||
| $ D(N,M), DF(N,M) ) | |||
| * | |||
| * Put random numbers into A and copy to AF | |||
| * | |||
| DO J = 1, N | |||
| CALL SLARNV( 2, ISEED, M, A( 1, J ) ) | |||
| END DO | |||
| IF( TESTZEROS ) THEN | |||
| IF( M.GE.4 ) THEN | |||
| DO J = 1, N | |||
| CALL SLARNV( 2, ISEED, M/2, A( M/4, J ) ) | |||
| END DO | |||
| END IF | |||
| END IF | |||
| CALL SLACPY( 'Full', M, N, A, M, AF, M ) | |||
| * | |||
| * Number of row blocks in SLATSQR | |||
| * | |||
| NRB = MAX( 1, CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) | |||
| * | |||
| ALLOCATE ( T1( NB1, N * NRB ) ) | |||
| ALLOCATE ( T2( NB2, N ) ) | |||
| ALLOCATE ( DIAG( N ) ) | |||
| * | |||
| * Begin determine LWORK for the array WORK and allocate memory. | |||
| * | |||
| * SGEMQRT requires NB2 to be bounded by N. | |||
| * | |||
| NB2_UB = MIN( NB2, N) | |||
| * | |||
| CALL SGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORKQUERY, -1, INFO ) | |||
| * | |||
| LWORK = INT( WORKQUERY( 1 ) ) | |||
| * | |||
| * In SGEMQRT, WORK is N*NB2_UB if SIDE = 'L', | |||
| * or M*NB2_UB if SIDE = 'R'. | |||
| * | |||
| LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M ) | |||
| * | |||
| ALLOCATE ( WORK( LWORK ) ) | |||
| * | |||
| * End allocate memory for WORK. | |||
| * | |||
| * | |||
| * Begin Householder reconstruction routines | |||
| * | |||
| * Factor the matrix A in the array AF. | |||
| * | |||
| SRNAMT = 'SGETSQRHRT' | |||
| CALL SGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORK, LWORK, INFO ) | |||
| * | |||
| * End Householder reconstruction routines. | |||
| * | |||
| * | |||
| * Generate the m-by-m matrix Q | |||
| * | |||
| CALL SLASET( 'Full', M, M, ZERO, ONE, Q, M ) | |||
| * | |||
| SRNAMT = 'SGEMQRT' | |||
| CALL SGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * Copy R | |||
| * | |||
| CALL SLASET( 'Full', M, N, ZERO, ZERO, R, M ) | |||
| * | |||
| CALL SLACPY( 'Upper', M, N, AF, M, R, M ) | |||
| * | |||
| * TEST 1 | |||
| * Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1) | |||
| * | |||
| CALL SGEMM( 'T', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M ) | |||
| * | |||
| ANORM = SLANGE( '1', M, N, A, M, RWORK ) | |||
| RESID = SLANGE( '1', M, N, R, M, RWORK ) | |||
| IF( ANORM.GT.ZERO ) THEN | |||
| RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM ) | |||
| ELSE | |||
| RESULT( 1 ) = ZERO | |||
| END IF | |||
| * | |||
| * TEST 2 | |||
| * Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2) | |||
| * | |||
| CALL SLASET( 'Full', M, M, ZERO, ONE, R, M ) | |||
| CALL SSYRK( 'U', 'T', M, M, -ONE, Q, M, ONE, R, M ) | |||
| RESID = SLANSY( '1', 'Upper', M, R, M, RWORK ) | |||
| RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) ) | |||
| * | |||
| * Generate random m-by-n matrix C | |||
| * | |||
| DO J = 1, N | |||
| CALL SLARNV( 2, ISEED, M, C( 1, J ) ) | |||
| END DO | |||
| CNORM = SLANGE( '1', M, N, C, M, RWORK ) | |||
| CALL SLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as Q*C = CF | |||
| * | |||
| SRNAMT = 'SGEMQRT' | |||
| CALL SGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 3 | |||
| * Compute |CF - Q*C| / ( eps * m * |C| ) | |||
| * | |||
| CALL SGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) | |||
| RESID = SLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 3 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy C into CF again | |||
| * | |||
| CALL SLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as (Q**T)*C = CF | |||
| * | |||
| SRNAMT = 'SGEMQRT' | |||
| CALL SGEMQRT( 'L', 'T', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 4 | |||
| * Compute |CF - (Q**T)*C| / ( eps * m * |C|) | |||
| * | |||
| CALL SGEMM( 'T', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) | |||
| RESID = SLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 4 ) = ZERO | |||
| END IF | |||
| * | |||
| * Generate random n-by-m matrix D and a copy DF | |||
| * | |||
| DO J = 1, M | |||
| CALL SLARNV( 2, ISEED, N, D( 1, J ) ) | |||
| END DO | |||
| DNORM = SLANGE( '1', N, M, D, N, RWORK ) | |||
| CALL SLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*Q = DF | |||
| * | |||
| SRNAMT = 'SGEMQRT' | |||
| CALL SGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 5 | |||
| * Compute |DF - D*Q| / ( eps * m * |D| ) | |||
| * | |||
| CALL SGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) | |||
| RESID = SLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 5 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy D into DF again | |||
| * | |||
| CALL SLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*QT = DF | |||
| * | |||
| SRNAMT = 'SGEMQRT' | |||
| CALL SGEMQRT( 'R', 'T', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 6 | |||
| * Compute |DF - D*(Q**T)| / ( eps * m * |D| ) | |||
| * | |||
| CALL SGEMM( 'N', 'T', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) | |||
| RESID = SLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 6 ) = ZERO | |||
| END IF | |||
| * | |||
| * Deallocate all arrays | |||
| * | |||
| DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG, | |||
| $ C, D, CF, DF ) | |||
| * | |||
| RETURN | |||
| * | |||
| * End of SORHR_COL02 | |||
| * | |||
| END | |||
| @@ -24,9 +24,12 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZCHKUNHR_COL tests ZUNHR_COL using ZLATSQR and ZGEMQRT. Therefore, ZLATSQR | |||
| *> (used in ZGEQR) and ZGEMQRT (used in ZGEMQR) have to be tested | |||
| *> before this test. | |||
| *> ZCHKUNHR_COL tests: | |||
| *> 1) ZUNGTSQR and ZUNHR_COL using ZLATSQR, ZGEMQRT, | |||
| *> 2) ZUNGTSQR_ROW and ZUNHR_COL inside ZGETSQRHRT | |||
| *> (which calls ZLATSQR, ZUNGTSQR_ROW and ZUNHR_COL) using ZGEMQRT. | |||
| *> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| @@ -97,19 +100,16 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup complex16_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE ZCHKUNHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, | |||
| $ NBVAL, NOUT ) | |||
| SUBROUTINE ZCHKUNHR_COL( THRESH, TSTERR, NM, MVAL, NN, NVAL, | |||
| $ NNB, NBVAL, NOUT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.7.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * December 2016 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| LOGICAL TSTERR | |||
| @@ -135,10 +135,11 @@ | |||
| DOUBLE PRECISION RESULT( NTESTS ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ALAHD, ALASUM, ZERRUNHR_COL, ZUNHR_COL01 | |||
| EXTERNAL ALAHD, ALASUM, ZERRUNHR_COL, ZUNHR_COL01, | |||
| $ ZUNHR_COL02 | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC MAX, MIN | |||
| INTRINSIC MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| LOGICAL LERR, OK | |||
| @@ -201,8 +202,8 @@ | |||
| * | |||
| * Test ZUNHR_COL | |||
| * | |||
| CALL ZUNHR_COL01( M, N, MB1, NB1, NB2, | |||
| $ RESULT ) | |||
| CALL ZUNHR_COL01( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| @@ -226,12 +227,78 @@ | |||
| END DO | |||
| END DO | |||
| * | |||
| * Do for each value of M in MVAL. | |||
| * | |||
| DO I = 1, NM | |||
| M = MVAL( I ) | |||
| * | |||
| * Do for each value of N in NVAL. | |||
| * | |||
| DO J = 1, NN | |||
| N = NVAL( J ) | |||
| * | |||
| * Only for M >= N | |||
| * | |||
| IF ( MIN( M, N ).GT.0 .AND. M.GE.N ) THEN | |||
| * | |||
| * Do for each possible value of MB1 | |||
| * | |||
| DO IMB1 = 1, NNB | |||
| MB1 = NBVAL( IMB1 ) | |||
| * | |||
| * Only for MB1 > N | |||
| * | |||
| IF ( MB1.GT.N ) THEN | |||
| * | |||
| * Do for each possible value of NB1 | |||
| * | |||
| DO INB1 = 1, NNB | |||
| NB1 = NBVAL( INB1 ) | |||
| * | |||
| * Do for each possible value of NB2 | |||
| * | |||
| DO INB2 = 1, NNB | |||
| NB2 = NBVAL( INB2 ) | |||
| * | |||
| IF( NB1.GT.0 .AND. NB2.GT.0 ) THEN | |||
| * | |||
| * Test ZUNHR_COL | |||
| * | |||
| CALL ZUNHR_COL02( M, N, MB1, NB1, | |||
| $ NB2, RESULT ) | |||
| * | |||
| * Print information about the tests that did | |||
| * not pass the threshold. | |||
| * | |||
| DO T = 1, NTESTS | |||
| IF( RESULT( T ).GE.THRESH ) THEN | |||
| IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) | |||
| $ CALL ALAHD( NOUT, PATH ) | |||
| WRITE( NOUT, FMT = 9998 ) M, N, MB1, | |||
| $ NB1, NB2, T, RESULT( T ) | |||
| NFAIL = NFAIL + 1 | |||
| END IF | |||
| END DO | |||
| NRUN = NRUN + NTESTS | |||
| END IF | |||
| END DO | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END IF | |||
| END DO | |||
| END DO | |||
| * | |||
| * Print a summary of the results. | |||
| * | |||
| CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) | |||
| * | |||
| 9999 FORMAT( 'M=', I5, ', N=', I5, ', MB1=', I5, | |||
| $ ', NB1=', I5, ', NB2=', I5,' test(', I2, ')=', G12.5 ) | |||
| 9999 FORMAT( 'ZUNGTSQR and ZUNHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| 9998 FORMAT( 'ZUNGTSQR_ROW and ZUNHR_COL: M=', I5, ', N=', I5, | |||
| $ ', MB1=', I5, ', NB1=', I5, ', NB2=', I5, | |||
| $ ' test(', I2, ')=', G12.5 ) | |||
| RETURN | |||
| * | |||
| * End of ZCHKUNHR_COL | |||
| @@ -21,8 +21,8 @@ | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZUNHR_COL01 tests ZUNHR_COL using ZLATSQR, ZGEMQRT and ZUNGTSQR. | |||
| *> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part ZGEMQR), ZUNGTSQR | |||
| *> ZUNHR_COL01 tests ZUNGTSQR and ZUNHR_COL using ZLATSQR, ZGEMQRT. | |||
| *> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| @@ -62,14 +62,46 @@ | |||
| *> \verbatim | |||
| *> RESULT is DOUBLE PRECISION array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> ( C is a M-by-N random matrix, D is a N-by-M random matrix ) | |||
| *> | |||
| *> RESULT(1) = | A - Q * R | / (eps * m * |A|) | |||
| *> RESULT(2) = | I - (Q**H) * Q | / (eps * m ) | |||
| *> RESULT(3) = | Q * C - Q * C | / (eps * m * |C|) | |||
| *> RESULT(4) = | (Q**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> RESULT(5) = | (D * Q) - D * Q | / (eps * m * |D|) | |||
| *> RESULT(6) = | D * (Q**H) - D * (Q**H) | / (eps * m * |D|) | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m unitary Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in ZGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m unitary matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using ZGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using ZGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| @@ -80,18 +112,15 @@ | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \date November 2019 | |||
| * | |||
| *> \ingroup complex16_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE ZUNHR_COL01( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine (version 3.9.0) -- | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * November 2019 | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| @@ -102,7 +131,7 @@ | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| COMPLEX*16, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| COMPLEX*16 , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| DOUBLE PRECISION, ALLOCATABLE :: RWORK(:) | |||
| @@ -218,7 +247,7 @@ | |||
| * Copy the factor R into the array R. | |||
| * | |||
| SRNAMT = 'ZLACPY' | |||
| CALL ZLACPY( 'U', M, N, AF, M, R, M ) | |||
| CALL ZLACPY( 'U', N, N, AF, M, R, M ) | |||
| * | |||
| * Reconstruct the orthogonal matrix Q. | |||
| * | |||
| @@ -240,7 +269,7 @@ | |||
| * matrix S. | |||
| * | |||
| SRNAMT = 'ZLACPY' | |||
| CALL ZLACPY( 'U', M, N, R, M, AF, M ) | |||
| CALL ZLACPY( 'U', N, N, R, M, AF, M ) | |||
| * | |||
| DO I = 1, N | |||
| IF( DIAG( I ).EQ.-CONE ) THEN | |||
| @@ -0,0 +1,381 @@ | |||
| *> \brief \b ZUNHR_COL02 | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| * DOUBLE PRECISION RESULT(6) | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZUNHR_COL02 tests ZUNGTSQR_ROW and ZUNHR_COL inside ZGETSQRHRT | |||
| *> (which calls ZLATSQR, ZUNGTSQR_ROW and ZUNHR_COL) using ZGEMQRT. | |||
| *> Therefore, ZLATSQR (part of ZGEQR), ZGEMQRT (part of ZGEMQR) | |||
| *> have to be tested before this test. | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> Number of rows in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> Number of columns in test matrix. | |||
| *> \endverbatim | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> Number of row in row block in an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> Number of columns in column block an input test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> Number of columns in column block in an output test matrix. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RESULT | |||
| *> \verbatim | |||
| *> RESULT is DOUBLE PRECISION array, dimension (6) | |||
| *> Results of each of the six tests below. | |||
| *> | |||
| *> A is a m-by-n test input matrix to be factored. | |||
| *> so that A = Q_gr * ( R ) | |||
| *> ( 0 ), | |||
| *> | |||
| *> Q_qr is an implicit m-by-m unitary Q matrix, the result | |||
| *> of factorization in blocked WY-representation, | |||
| *> stored in ZGEQRT output format. | |||
| *> | |||
| *> R is a n-by-n upper-triangular matrix, | |||
| *> | |||
| *> 0 is a (m-n)-by-n zero matrix, | |||
| *> | |||
| *> Q is an explicit m-by-m unitary matrix Q = Q_gr * I | |||
| *> | |||
| *> C is an m-by-n random matrix, | |||
| *> | |||
| *> D is an n-by-m random matrix. | |||
| *> | |||
| *> The six tests are: | |||
| *> | |||
| *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) | |||
| *> is equivalent to test for | A - Q * R | / (eps * m * |A|), | |||
| *> | |||
| *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), | |||
| *> | |||
| *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), | |||
| *> | |||
| *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) | |||
| *> | |||
| *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) | |||
| *> | |||
| *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), | |||
| *> | |||
| *> where: | |||
| *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are | |||
| *> computed using ZGEMQRT, | |||
| *> | |||
| *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are | |||
| *> computed using ZGEMM. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complex16_lin | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE ZUNHR_COL02( M, N, MB1, NB1, NB2, RESULT ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK test routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER M, N, MB1, NB1, NB2 | |||
| * .. Return values .. | |||
| DOUBLE PRECISION RESULT(6) | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. | |||
| * .. Local allocatable arrays | |||
| COMPLEX*16 , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), | |||
| $ WORK( : ), T1(:,:), T2(:,:), DIAG(:), | |||
| $ C(:,:), CF(:,:), D(:,:), DF(:,:) | |||
| DOUBLE PRECISION, ALLOCATABLE :: RWORK(:) | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ZERO | |||
| PARAMETER ( ZERO = 0.0D+0 ) | |||
| COMPLEX*16 CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), | |||
| $ CZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL TESTZEROS | |||
| INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB | |||
| DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM | |||
| * .. | |||
| * .. Local Arrays .. | |||
| INTEGER ISEED( 4 ) | |||
| COMPLEX*16 WORKQUERY( 1 ) | |||
| * .. | |||
| * .. External Functions .. | |||
| DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY | |||
| EXTERNAL DLAMCH, ZLANGE, ZLANSY | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ZLACPY, ZLARNV, ZLASET, ZGETSQRHRT, | |||
| $ ZSCAL, ZGEMM, ZGEMQRT, ZHERK | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, DBLE, MAX, MIN | |||
| * .. | |||
| * .. Scalars in Common .. | |||
| CHARACTER(LEN=32) SRNAMT | |||
| * .. | |||
| * .. Common blocks .. | |||
| COMMON / SRMNAMC / SRNAMT | |||
| * .. | |||
| * .. Data statements .. | |||
| DATA ISEED / 1988, 1989, 1990, 1991 / | |||
| * | |||
| * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS | |||
| * | |||
| TESTZEROS = .FALSE. | |||
| * | |||
| EPS = DLAMCH( 'Epsilon' ) | |||
| K = MIN( M, N ) | |||
| L = MAX( M, N, 1) | |||
| * | |||
| * Dynamically allocate local arrays | |||
| * | |||
| ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L), | |||
| $ C(M,N), CF(M,N), | |||
| $ D(N,M), DF(N,M) ) | |||
| * | |||
| * Put random numbers into A and copy to AF | |||
| * | |||
| DO J = 1, N | |||
| CALL ZLARNV( 2, ISEED, M, A( 1, J ) ) | |||
| END DO | |||
| IF( TESTZEROS ) THEN | |||
| IF( M.GE.4 ) THEN | |||
| DO J = 1, N | |||
| CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) ) | |||
| END DO | |||
| END IF | |||
| END IF | |||
| CALL ZLACPY( 'Full', M, N, A, M, AF, M ) | |||
| * | |||
| * Number of row blocks in ZLATSQR | |||
| * | |||
| NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) ) | |||
| * | |||
| ALLOCATE ( T1( NB1, N * NRB ) ) | |||
| ALLOCATE ( T2( NB2, N ) ) | |||
| ALLOCATE ( DIAG( N ) ) | |||
| * | |||
| * Begin determine LWORK for the array WORK and allocate memory. | |||
| * | |||
| * ZGEMQRT requires NB2 to be bounded by N. | |||
| * | |||
| NB2_UB = MIN( NB2, N) | |||
| * | |||
| * | |||
| CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORKQUERY, -1, INFO ) | |||
| * | |||
| LWORK = INT( WORKQUERY( 1 ) ) | |||
| * | |||
| * In ZGEMQRT, WORK is N*NB2_UB if SIDE = 'L', | |||
| * or M*NB2_UB if SIDE = 'R'. | |||
| * | |||
| LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M ) | |||
| * | |||
| ALLOCATE ( WORK( LWORK ) ) | |||
| * | |||
| * End allocate memory for WORK. | |||
| * | |||
| * | |||
| * Begin Householder reconstruction routines | |||
| * | |||
| * Factor the matrix A in the array AF. | |||
| * | |||
| SRNAMT = 'ZGETSQRHRT' | |||
| CALL ZGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, | |||
| $ WORK, LWORK, INFO ) | |||
| * | |||
| * End Householder reconstruction routines. | |||
| * | |||
| * | |||
| * Generate the m-by-m matrix Q | |||
| * | |||
| CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, M ) | |||
| * | |||
| SRNAMT = 'ZGEMQRT' | |||
| CALL ZGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * Copy R | |||
| * | |||
| CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M ) | |||
| * | |||
| CALL ZLACPY( 'Upper', M, N, AF, M, R, M ) | |||
| * | |||
| * TEST 1 | |||
| * Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1) | |||
| * | |||
| CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, A, M, CONE, R, M ) | |||
| * | |||
| ANORM = ZLANGE( '1', M, N, A, M, RWORK ) | |||
| RESID = ZLANGE( '1', M, N, R, M, RWORK ) | |||
| IF( ANORM.GT.ZERO ) THEN | |||
| RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM ) | |||
| ELSE | |||
| RESULT( 1 ) = ZERO | |||
| END IF | |||
| * | |||
| * TEST 2 | |||
| * Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2) | |||
| * | |||
| CALL ZLASET( 'Full', M, M, CZERO, CONE, R, M ) | |||
| CALL ZHERK( 'U', 'C', M, M, -CONE, Q, M, CONE, R, M ) | |||
| RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK ) | |||
| RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) ) | |||
| * | |||
| * Generate random m-by-n matrix C | |||
| * | |||
| DO J = 1, N | |||
| CALL ZLARNV( 2, ISEED, M, C( 1, J ) ) | |||
| END DO | |||
| CNORM = ZLANGE( '1', M, N, C, M, RWORK ) | |||
| CALL ZLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as Q*C = CF | |||
| * | |||
| SRNAMT = 'ZGEMQRT' | |||
| CALL ZGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 3 | |||
| * Compute |CF - Q*C| / ( eps * m * |C| ) | |||
| * | |||
| CALL ZGEMM( 'N', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M ) | |||
| RESID = ZLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 3 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy C into CF again | |||
| * | |||
| CALL ZLACPY( 'Full', M, N, C, M, CF, M ) | |||
| * | |||
| * Apply Q to C as (Q**T)*C = CF | |||
| * | |||
| SRNAMT = 'ZGEMQRT' | |||
| CALL ZGEMQRT( 'L', 'C', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 4 | |||
| * Compute |CF - (Q**T)*C| / ( eps * m * |C|) | |||
| * | |||
| CALL ZGEMM( 'C', 'N', M, N, M, -CONE, Q, M, C, M, CONE, CF, M ) | |||
| RESID = ZLANGE( '1', M, N, CF, M, RWORK ) | |||
| IF( CNORM.GT.ZERO ) THEN | |||
| RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) | |||
| ELSE | |||
| RESULT( 4 ) = ZERO | |||
| END IF | |||
| * | |||
| * Generate random n-by-m matrix D and a copy DF | |||
| * | |||
| DO J = 1, M | |||
| CALL ZLARNV( 2, ISEED, N, D( 1, J ) ) | |||
| END DO | |||
| DNORM = ZLANGE( '1', N, M, D, N, RWORK ) | |||
| CALL ZLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*Q = DF | |||
| * | |||
| SRNAMT = 'ZGEMQRT' | |||
| CALL ZGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 5 | |||
| * Compute |DF - D*Q| / ( eps * m * |D| ) | |||
| * | |||
| CALL ZGEMM( 'N', 'N', N, M, M, -CONE, D, N, Q, M, CONE, DF, N ) | |||
| RESID = ZLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 5 ) = ZERO | |||
| END IF | |||
| * | |||
| * Copy D into DF again | |||
| * | |||
| CALL ZLACPY( 'Full', N, M, D, N, DF, N ) | |||
| * | |||
| * Apply Q to D as D*QT = DF | |||
| * | |||
| SRNAMT = 'ZGEMQRT' | |||
| CALL ZGEMQRT( 'R', 'C', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, | |||
| $ WORK, INFO ) | |||
| * | |||
| * TEST 6 | |||
| * Compute |DF - D*(Q**T)| / ( eps * m * |D| ) | |||
| * | |||
| CALL ZGEMM( 'N', 'C', N, M, M, -CONE, D, N, Q, M, CONE, DF, N ) | |||
| RESID = ZLANGE( '1', N, M, DF, N, RWORK ) | |||
| IF( DNORM.GT.ZERO ) THEN | |||
| RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) | |||
| ELSE | |||
| RESULT( 6 ) = ZERO | |||
| END IF | |||
| * | |||
| * Deallocate all arrays | |||
| * | |||
| DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG, | |||
| $ C, D, CF, DF ) | |||
| * | |||
| RETURN | |||
| * | |||
| * End of ZUNHR_COL02 | |||
| * | |||
| END | |||