| @@ -135,14 +135,14 @@ SLASRC_O = \ | |||
| slaqgb.o slaqge.o slaqp2.o slaqps.o slaqsb.o slaqsp.o slaqsy.o \ | |||
| slaqr0.o slaqr1.o slaqr2.o slaqr3.o slaqr4.o slaqr5.o \ | |||
| slaqtr.o slar1v.o slar2v.o ilaslr.o ilaslc.o \ | |||
| slarf.o slarfb.o slarfg.o slarfgp.o slarft.o slarfx.o slarfy.o slargv.o \ | |||
| slarf.o slarfb.o slarfb_gett.o slarfg.o slarfgp.o slarft.o slarfx.o slarfy.o slargv.o \ | |||
| slarrv.o slartv.o \ | |||
| slarz.o slarzb.o slarzt.o slaswp.o slasy2.o slasyf.o slasyf_rook.o \ | |||
| slasyf_rk.o \ | |||
| slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o \ | |||
| slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \ | |||
| sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \ | |||
| sorgrq.o sorgtr.o sorgtsqr.o sorm2l.o sorm2r.o sorm22.o \ | |||
| sorgrq.o sorgtr.o sorgtsqr.o sorgtsqr_row.o sorm2l.o sorm2r.o sorm22.o \ | |||
| sormbr.o sormhr.o sorml2.o sormlq.o sormql.o sormqr.o sormr2.o \ | |||
| sormr3.o sormrq.o sormrz.o sormtr.o spbcon.o spbequ.o spbrfs.o \ | |||
| spbstf.o spbsv.o spbsvx.o \ | |||
| @@ -181,7 +181,7 @@ SLASRC_O = \ | |||
| sgeqrt.o sgeqrt2.o sgeqrt3.o sgemqrt.o \ | |||
| stpqrt.o stpqrt2.o stpmqrt.o stprfb.o \ | |||
| sgelqt.o sgelqt3.o sgemlqt.o \ | |||
| sgetsls.o sgeqr.o slatsqr.o slamtsqr.o sgemqr.o \ | |||
| sgetsls.o sgetsqrhrt.o sgeqr.o slatsqr.o slamtsqr.o sgemqr.o \ | |||
| sgelq.o slaswlq.o slamswlq.o sgemlq.o \ | |||
| stplqt.o stplqt2.o stpmlqt.o \ | |||
| sorhr_col.o slaorhr_col_getrfnp.o slaorhr_col_getrfnp2.o \ | |||
| @@ -250,7 +250,7 @@ CLASRC_O = \ | |||
| claqhb.o claqhe.o claqhp.o claqp2.o claqps.o claqsb.o \ | |||
| claqr0.o claqr1.o claqr2.o claqr3.o claqr4.o claqr5.o \ | |||
| claqsp.o claqsy.o clar1v.o clar2v.o ilaclr.o ilaclc.o \ | |||
| clarf.o clarfb.o clarfg.o clarft.o clarfgp.o \ | |||
| clarf.o clarfb.o clarfb_gett.o clarfg.o clarft.o clarfgp.o \ | |||
| clarfx.o clarfy.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \ | |||
| clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \ | |||
| claswp.o clasyf.o clasyf_rook.o clasyf_rk.o clasyf_aa.o \ | |||
| @@ -278,7 +278,7 @@ CLASRC_O = \ | |||
| ctptrs.o ctrcon.o ctrevc.o ctrevc3.o ctrexc.o ctrrfs.o ctrsen.o ctrsna.o \ | |||
| ctrsyl.o ctrti2.o ctrtri.o ctrtrs.o ctzrzf.o cung2l.o cung2r.o \ | |||
| cungbr.o cunghr.o cungl2.o cunglq.o cungql.o cungqr.o cungr2.o \ | |||
| cungrq.o cungtr.o cungtsqr.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o cunm22.o \ | |||
| cungrq.o cungtr.o cungtsqr.o cungtsqr_row.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o cunm22.o \ | |||
| cunmlq.o cunmql.o cunmqr.o cunmr2.o cunmr3.o cunmrq.o cunmrz.o \ | |||
| cunmtr.o cupgtr.o cupmtr.o icmax1.o scsum1.o cstemr.o \ | |||
| chfrk.o ctfttp.o clanhf.o cpftrf.o cpftri.o cpftrs.o ctfsm.o ctftri.o \ | |||
| @@ -342,14 +342,14 @@ DLASRC_O = \ | |||
| dlaqgb.o dlaqge.o dlaqp2.o dlaqps.o dlaqsb.o dlaqsp.o dlaqsy.o \ | |||
| dlaqr0.o dlaqr1.o dlaqr2.o dlaqr3.o dlaqr4.o dlaqr5.o \ | |||
| dlaqtr.o dlar1v.o dlar2v.o iladlr.o iladlc.o \ | |||
| dlarf.o dlarfb.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o dlarfy.o \ | |||
| dlarf.o dlarfb.o dlarfb_gett.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o dlarfy.o \ | |||
| dlargv.o dlarrv.o dlartv.o \ | |||
| dlarz.o dlarzb.o dlarzt.o dlaswp.o dlasy2.o \ | |||
| dlasyf.o dlasyf_rook.o dlasyf_rk.o \ | |||
| dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlauu2.o \ | |||
| dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \ | |||
| dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \ | |||
| dorgrq.o dorgtr.o dorgtsqr.o dorm2l.o dorm2r.o dorm22.o \ | |||
| dorgrq.o dorgtr.o dorgtsqr.o dorgtsqr_row.o dorm2l.o dorm2r.o dorm22.o \ | |||
| dormbr.o dormhr.o dorml2.o dormlq.o dormql.o dormqr.o dormr2.o \ | |||
| dormr3.o dormrq.o dormrz.o dormtr.o dpbcon.o dpbequ.o dpbrfs.o \ | |||
| dpbstf.o dpbsv.o dpbsvx.o \ | |||
| @@ -389,7 +389,7 @@ DLASRC_O = \ | |||
| dgeqrt.o dgeqrt2.o dgeqrt3.o dgemqrt.o \ | |||
| dtpqrt.o dtpqrt2.o dtpmqrt.o dtprfb.o \ | |||
| dgelqt.o dgelqt3.o dgemlqt.o \ | |||
| dgetsls.o dgeqr.o dlatsqr.o dlamtsqr.o dgemqr.o \ | |||
| dgetsls.o dgetsqrhrt.o dgeqr.o dlatsqr.o dlamtsqr.o dgemqr.o \ | |||
| dgelq.o dlaswlq.o dlamswlq.o dgemlq.o \ | |||
| dtplqt.o dtplqt2.o dtpmlqt.o \ | |||
| dorhr_col.o dlaorhr_col_getrfnp.o dlaorhr_col_getrfnp2.o \ | |||
| @@ -455,7 +455,7 @@ ZLASRC_O = \ | |||
| zlaqhb.o zlaqhe.o zlaqhp.o zlaqp2.o zlaqps.o zlaqsb.o \ | |||
| zlaqr0.o zlaqr1.o zlaqr2.o zlaqr3.o zlaqr4.o zlaqr5.o \ | |||
| zlaqsp.o zlaqsy.o zlar1v.o zlar2v.o ilazlr.o ilazlc.o \ | |||
| zlarcm.o zlarf.o zlarfb.o \ | |||
| zlarcm.o zlarf.o zlarfb.o zlarfb_gett.o \ | |||
| zlarfg.o zlarft.o zlarfgp.o \ | |||
| zlarfx.o zlarfy.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \ | |||
| zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \ | |||
| @@ -484,7 +484,7 @@ ZLASRC_O = \ | |||
| ztptrs.o ztrcon.o ztrevc.o ztrevc3.o ztrexc.o ztrrfs.o ztrsen.o ztrsna.o \ | |||
| ztrsyl.o ztrti2.o ztrtri.o ztrtrs.o ztzrzf.o zung2l.o \ | |||
| zung2r.o zungbr.o zunghr.o zungl2.o zunglq.o zungql.o zungqr.o zungr2.o \ | |||
| zungrq.o zungtr.o zungtsqr.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o zunm22.o \ | |||
| zungrq.o zungtr.o zungtsqr.o zungtsqr_row.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o zunm22.o \ | |||
| zunmlq.o zunmql.o zunmqr.o zunmr2.o zunmr3.o zunmrq.o zunmrz.o \ | |||
| zunmtr.o zupgtr.o \ | |||
| zupmtr.o izmax1.o dzsum1.o zstemr.o \ | |||
| @@ -498,7 +498,7 @@ ZLASRC_O = \ | |||
| ztpqrt.o ztpqrt2.o ztpmqrt.o ztprfb.o \ | |||
| ztplqt.o ztplqt2.o ztpmlqt.o \ | |||
| zgelqt.o zgelqt3.o zgemlqt.o \ | |||
| zgetsls.o zgeqr.o zlatsqr.o zlamtsqr.o zgemqr.o \ | |||
| zgetsls.o zgetsqrhrt.o zgeqr.o zlatsqr.o zlamtsqr.o zgemqr.o \ | |||
| zgelq.o zlaswlq.o zlamswlq.o zgemlq.o \ | |||
| zunhr_col.o zlaunhr_col_getrfnp.o zlaunhr_col_getrfnp2.o \ | |||
| zhetrd_2stage.o zhetrd_he2hb.o zhetrd_hb2st.o zhb2st_kernels.o \ | |||
| @@ -0,0 +1,349 @@ | |||
| *> \brief \b CGETSQRHRT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download CGETSQRHRT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetsqrhrt.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetsqrhrt.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetsqrhrt.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CGETSQRHRT computes a NB2-sized column blocked QR-factorization | |||
| *> of a complex M-by-N matrix A with M >= N, | |||
| *> | |||
| *> A = Q * R. | |||
| *> | |||
| *> The routine uses internally a NB1-sized column blocked and MB1-sized | |||
| *> row blocked TSQR-factorization and perfors the reconstruction | |||
| *> of the Householder vectors from the TSQR output. The routine also | |||
| *> converts the R_tsqr factor from the TSQR-factorization output into | |||
| *> the R factor that corresponds to the Householder QR-factorization, | |||
| *> | |||
| *> A = Q_tsqr * R_tsqr = Q * R. | |||
| *> | |||
| *> The output Q and R factors are stored in the same format as in CGEQRT | |||
| *> (Q is in blocked compact WY-representation). See the documentation | |||
| *> of CGEQRT for more details on the format. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> The row block size to be used in the blocked TSQR. | |||
| *> MB1 > N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> The column block size to be used in the blocked TSQR. | |||
| *> N >= NB1 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> The block size to be used in the blocked QR that is | |||
| *> output. NB2 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX*16 array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: an M-by-N matrix A. | |||
| *> | |||
| *> On exit: | |||
| *> a) the elements on and above the diagonal | |||
| *> of the array contain the N-by-N upper-triangular | |||
| *> matrix R corresponding to the Householder QR; | |||
| *> b) the elements below the diagonal represent Q by | |||
| *> the columns of blocked V (compact WY-representation). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] T | |||
| *> \verbatim | |||
| *> T is COMPLEX array, dimension (LDT,N)) | |||
| *> The upper triangular block reflectors stored in compact form | |||
| *> as a sequence of upper triangular blocks. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= NB2. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), | |||
| *> where | |||
| *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), | |||
| *> NB1LOCAL = MIN(NB1,N). | |||
| *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, | |||
| *> LW1 = NB1LOCAL * N, | |||
| *> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup comlpexOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX CONE | |||
| PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, | |||
| $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CCOPY, CLATSQR, CUNGTSQR_ROW, CUNHR_COL, | |||
| $ XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, REAL, CMPLX, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input arguments | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB1.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB1.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( NB2.LT.1 ) THEN | |||
| INFO = -5 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN | |||
| INFO = -9 | |||
| ELSE | |||
| * | |||
| * Test the input LWORK for the dimension of the array WORK. | |||
| * This workspace is used to store array: | |||
| * a) Matrix T and WORK for CLATSQR; | |||
| * b) N-by-N upper-triangular factor R_tsqr; | |||
| * c) Matrix T and array WORK for CUNGTSQR_ROW; | |||
| * d) Diagonal D for CUNHR_COL. | |||
| * | |||
| IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -11 | |||
| ELSE | |||
| * | |||
| * Set block size for column blocks | |||
| * | |||
| NB1LOCAL = MIN( NB1, N ) | |||
| * | |||
| NUM_ALL_ROW_BLOCKS = MAX( 1, | |||
| $ CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) | |||
| * | |||
| * Length and leading dimension of WORK array to place | |||
| * T array in TSQR. | |||
| * | |||
| LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL | |||
| LDWT = NB1LOCAL | |||
| * | |||
| * Length of TSQR work array | |||
| * | |||
| LW1 = NB1LOCAL * N | |||
| * | |||
| * Length of CUNGTSQR_ROW work array. | |||
| * | |||
| LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) | |||
| * | |||
| LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) | |||
| * | |||
| IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN | |||
| INFO = -11 | |||
| END IF | |||
| * | |||
| END IF | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and return workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'CGETSQRHRT', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| NB2LOCAL = MIN( NB2, N ) | |||
| * | |||
| * | |||
| * (1) Perform TSQR-factorization of the M-by-N matrix A. | |||
| * | |||
| CALL CLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK(LWT+1), LW1, IINFO ) | |||
| * | |||
| * (2) Copy the factor R_tsqr stored in the upper-triangular part | |||
| * of A into the square matrix in the work array | |||
| * WORK(LWT+1:LWT+N*N) column-by-column. | |||
| * | |||
| DO J = 1, N | |||
| CALL CCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 ) | |||
| END DO | |||
| * | |||
| * (3) Generate a M-by-N matrix Q with orthonormal columns from | |||
| * the result stored below the diagonal in the array A in place. | |||
| * | |||
| CALL CUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK( LWT+N*N+1 ), LW2, IINFO ) | |||
| * | |||
| * (4) Perform the reconstruction of Householder vectors from | |||
| * the matrix Q (stored in A) in place. | |||
| * | |||
| CALL CUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT, | |||
| $ WORK( LWT+N*N+1 ), IINFO ) | |||
| * | |||
| * (5) Copy the factor R_tsqr stored in the square matrix in the | |||
| * work array WORK(LWT+1:LWT+N*N) into the upper-triangular | |||
| * part of A. | |||
| * | |||
| * (6) Compute from R_tsqr the factor R_hr corresponding to | |||
| * the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. | |||
| * This multiplication by the sign matrix S on the left means | |||
| * changing the sign of I-th row of the matrix R_tsqr according | |||
| * to sign of the I-th diagonal element DIAG(I) of the matrix S. | |||
| * DIAG is stored in WORK( LWT+N*N+1 ) from the CUNHR_COL output. | |||
| * | |||
| * (5) and (6) can be combined in a single loop, so the rows in A | |||
| * are accessed only once. | |||
| * | |||
| DO I = 1, N | |||
| IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN | |||
| DO J = I, N | |||
| A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I ) | |||
| END DO | |||
| ELSE | |||
| CALL CCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA ) | |||
| END IF | |||
| END DO | |||
| * | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of CGETSQRHRT | |||
| * | |||
| END | |||
| @@ -0,0 +1,597 @@ | |||
| *> \brief \b CLARFB_GETT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download CLARFB_GETT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb_gett.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb_gett.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb_gett.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| *> | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE CLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| * $ WORK, LDWORK ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * CHARACTER IDENT | |||
| * INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| * $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CLARFB_GETT applies a complex Householder block reflector H from the | |||
| *> left to a complex (K+M)-by-N "triangular-pentagonal" matrix | |||
| *> composed of two block matrices: an upper trapezoidal K-by-N matrix A | |||
| *> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored | |||
| *> in the array B. The block reflector H is stored in a compact | |||
| *> WY-representation, where the elementary reflectors are in the | |||
| *> arrays A, B and T. See Further Details section. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] IDENT | |||
| *> \verbatim | |||
| *> IDENT is CHARACTER*1 | |||
| *> If IDENT = not 'I', or not 'i', then V1 is unit | |||
| *> lower-triangular and stored in the left K-by-K block of | |||
| *> the input matrix A, | |||
| *> If IDENT = 'I' or 'i', then V1 is an identity matrix and | |||
| *> not stored. | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix B. | |||
| *> M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrices A and B. | |||
| *> N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] K | |||
| *> \verbatim | |||
| *> K is INTEGER | |||
| *> The number or rows of the matrix A. | |||
| *> K is also order of the matrix T, i.e. the number of | |||
| *> elementary reflectors whose product defines the block | |||
| *> reflector. 0 <= K <= N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is COMPLEX array, dimension (LDT,K) | |||
| *> The upper-triangular K-by-K matrix T in the representation | |||
| *> of the block reflector. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= K. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the K-by-N upper-trapezoidal part A: input matrix A. | |||
| *> b) In the columns below the diagonal: columns of V1 | |||
| *> (ones are not stored on the diagonal). | |||
| *> | |||
| *> On exit: | |||
| *> A is overwritten by rectangular K-by-N product H*A. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,K). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] B | |||
| *> \verbatim | |||
| *> B is COMPLEX array, dimension (LDB,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the M-by-(N-K) right block: input matrix B. | |||
| *> b) In the M-by-N left block: columns of V2. | |||
| *> | |||
| *> On exit: | |||
| *> B is overwritten by rectangular M-by-N product H*B. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDB | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array B. LDB >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> WORK is COMPLEX array, | |||
| *> dimension (LDWORK,max(K,N-K)) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDWORK | |||
| *> \verbatim | |||
| *> LDWORK is INTEGER | |||
| *> The leading dimension of the array WORK. LDWORK>=max(1,K). | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complexOTHERauxiliary | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| *> \par Further Details: | |||
| * ===================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> (1) Description of the Algebraic Operation. | |||
| *> | |||
| *> The matrix A is a K-by-N matrix composed of two column block | |||
| *> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): | |||
| *> A = ( A1, A2 ). | |||
| *> The matrix B is an M-by-N matrix composed of two column block | |||
| *> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): | |||
| *> B = ( B1, B2 ). | |||
| *> | |||
| *> Perform the operation: | |||
| *> | |||
| *> ( A_out ) := H * ( A_in ) = ( I - V * T * V**H ) * ( A_in ) = | |||
| *> ( B_out ) ( B_in ) ( B_in ) | |||
| *> = ( I - ( V1 ) * T * ( V1**H, V2**H ) ) * ( A_in ) | |||
| *> ( V2 ) ( B_in ) | |||
| *> On input: | |||
| *> | |||
| *> a) ( A_in ) consists of two block columns: | |||
| *> ( B_in ) | |||
| *> | |||
| *> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) | |||
| *> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_in ) is a K-by-K upper-triangular matrix stored in the | |||
| *> upper triangular part of the array A(1:K,1:K). | |||
| *> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored. | |||
| *> | |||
| *> ( A2_in ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_in ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> b) V = ( V1 ) | |||
| *> ( V2 ) | |||
| *> | |||
| *> where: | |||
| *> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; | |||
| *> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, | |||
| *> stored in the lower-triangular part of the array | |||
| *> A(1:K,1:K) (ones are not stored), | |||
| *> and V2 is an M-by-K rectangular stored the array B(1:M,1:K), | |||
| *> (because on input B1_in is a rectangular zero | |||
| *> matrix that is not stored and the space is | |||
| *> used to store V2). | |||
| *> | |||
| *> c) T is a K-by-K upper-triangular matrix stored | |||
| *> in the array T(1:K,1:K). | |||
| *> | |||
| *> On output: | |||
| *> | |||
| *> a) ( A_out ) consists of two block columns: | |||
| *> ( B_out ) | |||
| *> | |||
| *> ( A_out ) = (( A1_out ) ( A2_out )) | |||
| *> ( B_out ) (( B1_out ) ( B2_out )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_out ) is a K-by-K square matrix, or a K-by-K | |||
| *> upper-triangular matrix, if V1 is an | |||
| *> identity matrix. AiOut is stored in | |||
| *> the array A(1:K,1:K). | |||
| *> ( B1_out ) is an M-by-K rectangular matrix stored | |||
| *> in the array B(1:M,K:N). | |||
| *> | |||
| *> ( A2_out ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_out ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> | |||
| *> The operation above can be represented as the same operation | |||
| *> on each block column: | |||
| *> | |||
| *> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**H ) * ( A1_in ) | |||
| *> ( B1_out ) ( 0 ) ( 0 ) | |||
| *> | |||
| *> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**H ) * ( A2_in ) | |||
| *> ( B2_out ) ( B2_in ) ( B2_in ) | |||
| *> | |||
| *> If IDENT != 'I': | |||
| *> | |||
| *> The computation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*(V1**H)*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*(V1**H)*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - V1*T*( (V1**H)*A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( (V1**H)*A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> If IDENT == 'I': | |||
| *> | |||
| *> The operation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - T*( A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> (2) Description of the Algorithmic Computation. | |||
| *> | |||
| *> In the first step, we compute column block 2, i.e. A2 and B2. | |||
| *> Here, we need to use the K-by-(N-K) rectangular workspace | |||
| *> matrix W2 that is of the same size as the matrix A2. | |||
| *> W2 is stored in the array WORK(1:K,1:(N-K)). | |||
| *> | |||
| *> In the second step, we compute column block 1, i.e. A1 and B1. | |||
| *> Here, we need to use the K-by-K square workspace matrix W1 | |||
| *> that is of the same size as the as the matrix A1. | |||
| *> W1 is stored in the array WORK(1:K,1:K). | |||
| *> | |||
| *> NOTE: Hence, in this routine, we need the workspace array WORK | |||
| *> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from | |||
| *> the first step and W1 from the second step. | |||
| *> | |||
| *> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I', | |||
| *> more computations than in the Case (B). | |||
| *> | |||
| *> if( IDENT != 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(2) W2: = (V1**H) * W2 = (unit_lower_tr_of_(A1)**H) * W2 | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(2) W1: = (V1**H) * W1 = (unit_lower_tr_of_(A1)**H) * W1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6) square A1: = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I', | |||
| *> less computations than in the Case (A) | |||
| *> | |||
| *> if( IDENT == 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(6) upper-triangular_of_(A1): = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Combine these cases (A) and (B) together, this is the resulting | |||
| *> algorithm: | |||
| *> | |||
| *> if ( N > K ) then | |||
| *> | |||
| *> (First Step - column block 2) | |||
| *> | |||
| *> col2_(1) W2: = A2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(2) W2: = (V1**H) * W2 | |||
| *> = (unit_lower_tr_of_(A1)**H) * W2 | |||
| *> end if | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2] | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> end if | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> | |||
| *> else | |||
| *> | |||
| *> (Second Step - column block 1) | |||
| *> | |||
| *> col1_(1) W1: = A1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(2) W1: = (V1**H) * W1 | |||
| *> = (unit_lower_tr_of_(A1)**H) * W1 | |||
| *> end if | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) | |||
| *> end if | |||
| *> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) | |||
| *> | |||
| *> end if | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE CLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| $ WORK, LDWORK ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK auxiliary routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| CHARACTER IDENT | |||
| INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), | |||
| $ CZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LNOTIDENT | |||
| INTEGER I, J | |||
| * .. | |||
| * .. EXTERNAL FUNCTIONS .. | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CCOPY, CGEMM, CTRMM | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N ) | |||
| $ RETURN | |||
| * | |||
| LNOTIDENT = .NOT.LSAME( IDENT, 'I' ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * First Step. Computation of the Column Block 2: | |||
| * | |||
| * ( A2 ) := H * ( A2 ) | |||
| * ( B2 ) ( B2 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| IF( N.GT.K ) THEN | |||
| * | |||
| * col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N) | |||
| * into W2=WORK(1:K, 1:N-K) column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| CALL CCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(2) Compute W2: = (V1**H) * W2 = (A1**H) * W2, | |||
| * V1 is not an identy matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| * | |||
| CALL CTRMM( 'L', 'L', 'C', 'U', K, N-K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(3) Compute W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL CGEMM( 'C', 'N', K, N-K, M, CONE, B, LDB, | |||
| $ B( 1, K+1 ), LDB, CONE, WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(4) Compute W2: = T * W2, | |||
| * T is upper-triangular. | |||
| * | |||
| CALL CTRMM( 'L', 'U', 'N', 'N', K, N-K, CONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2, | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL CGEMM( 'N', 'N', M, N-K, K, -CONE, B, LDB, | |||
| $ WORK, LDWORK, CONE, B( 1, K+1 ), LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(6) Compute W2: = V1 * W2 = A1 * W2, | |||
| * V1 is not an identity matrix, but unit lower-triangular, | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| CALL CTRMM( 'L', 'L', 'N', 'U', K, N-K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(7) Compute A2: = A2 - W2 = | |||
| * = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K), | |||
| * column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| DO I = 1, K | |||
| A( I, K+J ) = A( I, K+J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * Second Step. Computation of the Column Block 1: | |||
| * | |||
| * ( A1 ) := H * ( A1 ) | |||
| * ( B1 ) ( 0 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * col1_(1) Compute W1: = A1. Copy the upper-triangular | |||
| * A1 = A(1:K, 1:K) into the upper-triangular | |||
| * W1 = WORK(1:K, 1:K) column-by-column. | |||
| * | |||
| DO J = 1, K | |||
| CALL CCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| * | |||
| * Set the subdiagonal elements of W1 to zero column-by-column. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| WORK( I, J ) = CZERO | |||
| END DO | |||
| END DO | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(2) Compute W1: = (V1**H) * W1 = (A1**H) * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL CTRMM( 'L', 'L', 'C', 'U', K, K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col1_(3) Compute W1: = T * W1, | |||
| * T is upper-triangular, | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL CTRMM( 'L', 'U', 'N', 'N', K, K, CONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(4) Compute B1: = - V2 * W1 = - B1 * W1, | |||
| * V2 = B1, W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL CTRMM( 'R', 'U', 'N', 'N', M, K, -CONE, WORK, LDWORK, | |||
| $ B, LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(5) Compute W1: = V1 * W1 = A1 * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular on input with zeroes below the diagonal, | |||
| * and square on output. | |||
| * | |||
| CALL CTRMM( 'L', 'L', 'N', 'U', K, K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K) | |||
| * column-by-column. A1 is upper-triangular on input. | |||
| * If IDENT, A1 is square on output, and W1 is square, | |||
| * if NOT IDENT, A1 is upper-triangular on output, | |||
| * W1 is upper-triangular. | |||
| * | |||
| * col1_(6)_a Compute elements of A1 below the diagonal. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| A( I, J ) = - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * col1_(6)_b Compute elements of A1 on and above the diagonal. | |||
| * | |||
| DO J = 1, K | |||
| DO I = 1, J | |||
| A( I, J ) = A( I, J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| RETURN | |||
| * | |||
| * End of CLARFB_GETT | |||
| * | |||
| END | |||
| @@ -0,0 +1,380 @@ | |||
| *> \brief \b CUNGTSQR_ROW | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download CUNGTSQR_ROW + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| *> | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CUNGTSQR_ROW generates an M-by-N complex matrix Q_out with | |||
| *> orthonormal columns from the output of CLATSQR. These N orthonormal | |||
| *> columns are the first N columns of a product of complex unitary | |||
| *> matrices Q(k)_in of order M, which are returned by CLATSQR in | |||
| *> a special format. | |||
| *> | |||
| *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). | |||
| *> | |||
| *> The input matrices Q(k)_in are stored in row and column blocks in A. | |||
| *> See the documentation of CLATSQR for more details on the format of | |||
| *> Q(k)_in, where each Q(k)_in is represented by block Householder | |||
| *> transformations. This routine calls an auxiliary routine CLARFB_GETT, | |||
| *> where the computation is performed on each individual block. The | |||
| *> algorithm first sweeps NB-sized column blocks from the right to left | |||
| *> starting in the bottom row block and continues to the top row block | |||
| *> (hence _ROW in the routine name). This sweep is in reverse order of | |||
| *> the order in which CLATSQR generates the output blocks. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB | |||
| *> \verbatim | |||
| *> MB is INTEGER | |||
| *> The row block size used by CLATSQR to return | |||
| *> arrays A and T. MB > N. | |||
| *> (Note that if MB > M, then M is used instead of MB | |||
| *> as the row block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB | |||
| *> \verbatim | |||
| *> NB is INTEGER | |||
| *> The column block size used by CLATSQR to return | |||
| *> arrays A and T. NB >= 1. | |||
| *> (Note that if NB > N, then N is used instead of NB | |||
| *> as the column block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> | |||
| *> The elements on and above the diagonal are not used as | |||
| *> input. The elements below the diagonal represent the unit | |||
| *> lower-trapezoidal blocked matrix V computed by CLATSQR | |||
| *> that defines the input matrices Q_in(k) (ones on the | |||
| *> diagonal are not stored). See CLATSQR for more details. | |||
| *> | |||
| *> On exit: | |||
| *> | |||
| *> The array A contains an M-by-N orthonormal matrix Q_out, | |||
| *> i.e the columns of A are orthogonal unit vectors. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is COMPLEX array, | |||
| *> dimension (LDT, N * NIRB) | |||
| *> where NIRB = Number_of_input_row_blocks | |||
| *> = MAX( 1, CEIL((M-N)/(MB-N)) ) | |||
| *> Let NICB = Number_of_input_col_blocks | |||
| *> = CEIL(N/NB) | |||
| *> | |||
| *> The upper-triangular block reflectors used to define the | |||
| *> input matrices Q_in(k), k=(1:NIRB*NICB). The block | |||
| *> reflectors are stored in compact form in NIRB block | |||
| *> reflector sequences. Each of the NIRB block reflector | |||
| *> sequences is stored in a larger NB-by-N column block of T | |||
| *> and consists of NICB smaller NB-by-NB upper-triangular | |||
| *> column blocks. See CLATSQR for more details on the format | |||
| *> of T. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. | |||
| *> LDT >= max(1,min(NB,N)). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), | |||
| *> where NBLOCAL=MIN(NB,N). | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| *> | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complexOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), | |||
| $ CZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM, | |||
| $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB, | |||
| $ KB, KB_LAST, KNB, MB1 | |||
| * .. | |||
| * .. Local Arrays .. | |||
| COMPLEX DUMMY( 1, 1 ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CLARFB_GETT, CLASET, XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CMPLX, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input parameters | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN | |||
| INFO = -8 | |||
| ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -10 | |||
| END IF | |||
| * | |||
| NBLOCAL = MIN( NB, N ) | |||
| * | |||
| * Determine the workspace size. | |||
| * | |||
| IF( INFO.EQ.0 ) THEN | |||
| LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) ) | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and handle the workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'CUNGTSQR_ROW', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * (0) Set the upper-triangular part of the matrix A to zero and | |||
| * its diagonal elements to one. | |||
| * | |||
| CALL CLASET('U', M, N, CZERO, CONE, A, LDA ) | |||
| * | |||
| * KB_LAST is the column index of the last column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1 | |||
| * | |||
| * | |||
| * (1) Bottom-up loop over row blocks of A, except the top row block. | |||
| * NOTE: If MB>=M, then the loop is never executed. | |||
| * | |||
| IF ( MB.LT.M ) THEN | |||
| * | |||
| * MB2 is the row blocking size for the row blocks before the | |||
| * first top row block in the matrix A. IB is the row index for | |||
| * the row blocks in the matrix A before the first top row block. | |||
| * IB_BOTTOM is the row index for the last bottom row block | |||
| * in the matrix A. JB_T is the column index of the corresponding | |||
| * column block in the matrix T. | |||
| * | |||
| * Initialize variables. | |||
| * | |||
| * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A | |||
| * including the first row block. | |||
| * | |||
| MB2 = MB - N | |||
| M_PLUS_ONE = M + 1 | |||
| ITMP = ( M - MB - 1 ) / MB2 | |||
| IB_BOTTOM = ITMP * MB2 + MB + 1 | |||
| NUM_ALL_ROW_BLOCKS = ITMP + 2 | |||
| JB_T = NUM_ALL_ROW_BLOCKS * N + 1 | |||
| * | |||
| DO IB = IB_BOTTOM, MB+1, -MB2 | |||
| * | |||
| * Determine the block size IMB for the current row block | |||
| * in the matrix A. | |||
| * | |||
| IMB = MIN( M_PLUS_ONE - IB, MB2 ) | |||
| * | |||
| * Determine the column index JB_T for the current column block | |||
| * in the matrix T. | |||
| * | |||
| JB_T = JB_T - N | |||
| * | |||
| * Apply column blocks of H in the row block from right to left. | |||
| * | |||
| * KB is the column index of the current column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| CALL CLARFB_GETT( 'I', IMB, N-KB+1, KNB, | |||
| $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA, | |||
| $ A( IB, KB ), LDA, WORK, KNB ) | |||
| * | |||
| END DO | |||
| * | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * (2) Top row block of A. | |||
| * NOTE: If MB>=M, then we have only one row block of A of size M | |||
| * and we work on the entire matrix A. | |||
| * | |||
| MB1 = MIN( MB, M ) | |||
| * | |||
| * Apply column blocks of H in the top row block from right to left. | |||
| * | |||
| * KB is the column index of the current block reflector in | |||
| * the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| IF( MB1-KB-KNB+1.EQ.0 ) THEN | |||
| * | |||
| * In SLARFB_GETT parameters, when M=0, then the matrix B | |||
| * does not exist, hence we need to pass a dummy array | |||
| * reference DUMMY(1,1) to B with LDDUMMY=1. | |||
| * | |||
| CALL CLARFB_GETT( 'N', 0, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ DUMMY( 1, 1 ), 1, WORK, KNB ) | |||
| ELSE | |||
| CALL CLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ A( KB+KNB, KB), LDA, WORK, KNB ) | |||
| END IF | |||
| * | |||
| END DO | |||
| * | |||
| WORK( 1 ) = CMPLX( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of CUNGTSQR_ROW | |||
| * | |||
| END | |||
| @@ -0,0 +1,349 @@ | |||
| *> \brief \b DGETSQRHRT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download DGETSQRHRT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetsqrhrt.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetsqrhrt.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetsqrhrt.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DGETSQRHRT computes a NB2-sized column blocked QR-factorization | |||
| *> of a real M-by-N matrix A with M >= N, | |||
| *> | |||
| *> A = Q * R. | |||
| *> | |||
| *> The routine uses internally a NB1-sized column blocked and MB1-sized | |||
| *> row blocked TSQR-factorization and perfors the reconstruction | |||
| *> of the Householder vectors from the TSQR output. The routine also | |||
| *> converts the R_tsqr factor from the TSQR-factorization output into | |||
| *> the R factor that corresponds to the Householder QR-factorization, | |||
| *> | |||
| *> A = Q_tsqr * R_tsqr = Q * R. | |||
| *> | |||
| *> The output Q and R factors are stored in the same format as in DGEQRT | |||
| *> (Q is in blocked compact WY-representation). See the documentation | |||
| *> of DGEQRT for more details on the format. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> The row block size to be used in the blocked TSQR. | |||
| *> MB1 > N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> The column block size to be used in the blocked TSQR. | |||
| *> N >= NB1 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> The block size to be used in the blocked QR that is | |||
| *> output. NB2 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is DOUBLE PRECISION array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: an M-by-N matrix A. | |||
| *> | |||
| *> On exit: | |||
| *> a) the elements on and above the diagonal | |||
| *> of the array contain the N-by-N upper-triangular | |||
| *> matrix R corresponding to the Householder QR; | |||
| *> b) the elements below the diagonal represent Q by | |||
| *> the columns of blocked V (compact WY-representation). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] T | |||
| *> \verbatim | |||
| *> T is DOUBLE PRECISION array, dimension (LDT,N)) | |||
| *> The upper triangular block reflectors stored in compact form | |||
| *> as a sequence of upper triangular blocks. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= NB2. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), | |||
| *> where | |||
| *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), | |||
| *> NB1LOCAL = MIN(NB1,N). | |||
| *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, | |||
| *> LW1 = NB1LOCAL * N, | |||
| *> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup doubleOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ONE | |||
| PARAMETER ( ONE = 1.0D+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, | |||
| $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL DCOPY, DLATSQR, DORGTSQR_ROW, DORHR_COL, | |||
| $ XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, DBLE, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input arguments | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB1.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB1.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( NB2.LT.1 ) THEN | |||
| INFO = -5 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN | |||
| INFO = -9 | |||
| ELSE | |||
| * | |||
| * Test the input LWORK for the dimension of the array WORK. | |||
| * This workspace is used to store array: | |||
| * a) Matrix T and WORK for DLATSQR; | |||
| * b) N-by-N upper-triangular factor R_tsqr; | |||
| * c) Matrix T and array WORK for DORGTSQR_ROW; | |||
| * d) Diagonal D for DORHR_COL. | |||
| * | |||
| IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -11 | |||
| ELSE | |||
| * | |||
| * Set block size for column blocks | |||
| * | |||
| NB1LOCAL = MIN( NB1, N ) | |||
| * | |||
| NUM_ALL_ROW_BLOCKS = MAX( 1, | |||
| $ CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) ) | |||
| * | |||
| * Length and leading dimension of WORK array to place | |||
| * T array in TSQR. | |||
| * | |||
| LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL | |||
| LDWT = NB1LOCAL | |||
| * | |||
| * Length of TSQR work array | |||
| * | |||
| LW1 = NB1LOCAL * N | |||
| * | |||
| * Length of DORGTSQR_ROW work array. | |||
| * | |||
| LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) | |||
| * | |||
| LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) | |||
| * | |||
| IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN | |||
| INFO = -11 | |||
| END IF | |||
| * | |||
| END IF | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and return workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'DGETSQRHRT', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| NB2LOCAL = MIN( NB2, N ) | |||
| * | |||
| * | |||
| * (1) Perform TSQR-factorization of the M-by-N matrix A. | |||
| * | |||
| CALL DLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK(LWT+1), LW1, IINFO ) | |||
| * | |||
| * (2) Copy the factor R_tsqr stored in the upper-triangular part | |||
| * of A into the square matrix in the work array | |||
| * WORK(LWT+1:LWT+N*N) column-by-column. | |||
| * | |||
| DO J = 1, N | |||
| CALL DCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 ) | |||
| END DO | |||
| * | |||
| * (3) Generate a M-by-N matrix Q with orthonormal columns from | |||
| * the result stored below the diagonal in the array A in place. | |||
| * | |||
| CALL DORGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK( LWT+N*N+1 ), LW2, IINFO ) | |||
| * | |||
| * (4) Perform the reconstruction of Householder vectors from | |||
| * the matrix Q (stored in A) in place. | |||
| * | |||
| CALL DORHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT, | |||
| $ WORK( LWT+N*N+1 ), IINFO ) | |||
| * | |||
| * (5) Copy the factor R_tsqr stored in the square matrix in the | |||
| * work array WORK(LWT+1:LWT+N*N) into the upper-triangular | |||
| * part of A. | |||
| * | |||
| * (6) Compute from R_tsqr the factor R_hr corresponding to | |||
| * the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. | |||
| * This multiplication by the sign matrix S on the left means | |||
| * changing the sign of I-th row of the matrix R_tsqr according | |||
| * to sign of the I-th diagonal element DIAG(I) of the matrix S. | |||
| * DIAG is stored in WORK( LWT+N*N+1 ) from the DORHR_COL output. | |||
| * | |||
| * (5) and (6) can be combined in a single loop, so the rows in A | |||
| * are accessed only once. | |||
| * | |||
| DO I = 1, N | |||
| IF( WORK( LWT+N*N+I ).EQ.-ONE ) THEN | |||
| DO J = I, N | |||
| A( I, J ) = -ONE * WORK( LWT+N*(J-1)+I ) | |||
| END DO | |||
| ELSE | |||
| CALL DCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA ) | |||
| END IF | |||
| END DO | |||
| * | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of DGETSQRHRT | |||
| * | |||
| END | |||
| @@ -0,0 +1,596 @@ | |||
| *> \brief \b DLARFB_GETT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download DLARFB_GETT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfb_gett.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfb_gett.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfb_gett.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| * $ WORK, LDWORK ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * CHARACTER IDENT | |||
| * INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| * $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DLARFB_GETT applies a real Householder block reflector H from the | |||
| *> left to a real (K+M)-by-N "triangular-pentagonal" matrix | |||
| *> composed of two block matrices: an upper trapezoidal K-by-N matrix A | |||
| *> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored | |||
| *> in the array B. The block reflector H is stored in a compact | |||
| *> WY-representation, where the elementary reflectors are in the | |||
| *> arrays A, B and T. See Further Details section. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] IDENT | |||
| *> \verbatim | |||
| *> IDENT is CHARACTER*1 | |||
| *> If IDENT = not 'I', or not 'i', then V1 is unit | |||
| *> lower-triangular and stored in the left K-by-K block of | |||
| *> the input matrix A, | |||
| *> If IDENT = 'I' or 'i', then V1 is an identity matrix and | |||
| *> not stored. | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix B. | |||
| *> M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrices A and B. | |||
| *> N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] K | |||
| *> \verbatim | |||
| *> K is INTEGER | |||
| *> The number or rows of the matrix A. | |||
| *> K is also order of the matrix T, i.e. the number of | |||
| *> elementary reflectors whose product defines the block | |||
| *> reflector. 0 <= K <= N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is DOUBLE PRECISION array, dimension (LDT,K) | |||
| *> The upper-triangular K-by-K matrix T in the representation | |||
| *> of the block reflector. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= K. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is DOUBLE PRECISION array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the K-by-N upper-trapezoidal part A: input matrix A. | |||
| *> b) In the columns below the diagonal: columns of V1 | |||
| *> (ones are not stored on the diagonal). | |||
| *> | |||
| *> On exit: | |||
| *> A is overwritten by rectangular K-by-N product H*A. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,K). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] B | |||
| *> \verbatim | |||
| *> B is DOUBLE PRECISION array, dimension (LDB,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the M-by-(N-K) right block: input matrix B. | |||
| *> b) In the M-by-N left block: columns of V2. | |||
| *> | |||
| *> On exit: | |||
| *> B is overwritten by rectangular M-by-N product H*B. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDB | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array B. LDB >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> WORK is DOUBLE PRECISION array, | |||
| *> dimension (LDWORK,max(K,N-K)) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDWORK | |||
| *> \verbatim | |||
| *> LDWORK is INTEGER | |||
| *> The leading dimension of the array WORK. LDWORK>=max(1,K). | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup doubleOTHERauxiliary | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| *> \par Further Details: | |||
| * ===================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> (1) Description of the Algebraic Operation. | |||
| *> | |||
| *> The matrix A is a K-by-N matrix composed of two column block | |||
| *> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): | |||
| *> A = ( A1, A2 ). | |||
| *> The matrix B is an M-by-N matrix composed of two column block | |||
| *> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): | |||
| *> B = ( B1, B2 ). | |||
| *> | |||
| *> Perform the operation: | |||
| *> | |||
| *> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) = | |||
| *> ( B_out ) ( B_in ) ( B_in ) | |||
| *> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in ) | |||
| *> ( V2 ) ( B_in ) | |||
| *> On input: | |||
| *> | |||
| *> a) ( A_in ) consists of two block columns: | |||
| *> ( B_in ) | |||
| *> | |||
| *> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) | |||
| *> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_in ) is a K-by-K upper-triangular matrix stored in the | |||
| *> upper triangular part of the array A(1:K,1:K). | |||
| *> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored. | |||
| *> | |||
| *> ( A2_in ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_in ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> b) V = ( V1 ) | |||
| *> ( V2 ) | |||
| *> | |||
| *> where: | |||
| *> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; | |||
| *> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, | |||
| *> stored in the lower-triangular part of the array | |||
| *> A(1:K,1:K) (ones are not stored), | |||
| *> and V2 is an M-by-K rectangular stored the array B(1:M,1:K), | |||
| *> (because on input B1_in is a rectangular zero | |||
| *> matrix that is not stored and the space is | |||
| *> used to store V2). | |||
| *> | |||
| *> c) T is a K-by-K upper-triangular matrix stored | |||
| *> in the array T(1:K,1:K). | |||
| *> | |||
| *> On output: | |||
| *> | |||
| *> a) ( A_out ) consists of two block columns: | |||
| *> ( B_out ) | |||
| *> | |||
| *> ( A_out ) = (( A1_out ) ( A2_out )) | |||
| *> ( B_out ) (( B1_out ) ( B2_out )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_out ) is a K-by-K square matrix, or a K-by-K | |||
| *> upper-triangular matrix, if V1 is an | |||
| *> identity matrix. AiOut is stored in | |||
| *> the array A(1:K,1:K). | |||
| *> ( B1_out ) is an M-by-K rectangular matrix stored | |||
| *> in the array B(1:M,K:N). | |||
| *> | |||
| *> ( A2_out ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_out ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> | |||
| *> The operation above can be represented as the same operation | |||
| *> on each block column: | |||
| *> | |||
| *> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in ) | |||
| *> ( B1_out ) ( 0 ) ( 0 ) | |||
| *> | |||
| *> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in ) | |||
| *> ( B2_out ) ( B2_in ) ( B2_in ) | |||
| *> | |||
| *> If IDENT != 'I': | |||
| *> | |||
| *> The computation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*(V1**T)*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*(V1**T)*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> If IDENT == 'I': | |||
| *> | |||
| *> The operation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T**A1_in | |||
| *> | |||
| *> B1_out: = - V2*T**A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> (2) Description of the Algorithmic Computation. | |||
| *> | |||
| *> In the first step, we compute column block 2, i.e. A2 and B2. | |||
| *> Here, we need to use the K-by-(N-K) rectangular workspace | |||
| *> matrix W2 that is of the same size as the matrix A2. | |||
| *> W2 is stored in the array WORK(1:K,1:(N-K)). | |||
| *> | |||
| *> In the second step, we compute column block 1, i.e. A1 and B1. | |||
| *> Here, we need to use the K-by-K square workspace matrix W1 | |||
| *> that is of the same size as the as the matrix A1. | |||
| *> W1 is stored in the array WORK(1:K,1:K). | |||
| *> | |||
| *> NOTE: Hence, in this routine, we need the workspace array WORK | |||
| *> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from | |||
| *> the first step and W1 from the second step. | |||
| *> | |||
| *> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I', | |||
| *> more computations than in the Case (B). | |||
| *> | |||
| *> if( IDENT != 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2 | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6) square A1: = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I', | |||
| *> less computations than in the Case (A) | |||
| *> | |||
| *> if( IDENT == 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(6) upper-triangular_of_(A1): = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Combine these cases (A) and (B) together, this is the resulting | |||
| *> algorithm: | |||
| *> | |||
| *> if ( N > K ) then | |||
| *> | |||
| *> (First Step - column block 2) | |||
| *> | |||
| *> col2_(1) W2: = A2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(2) W2: = (V1**T) * W2 | |||
| *> = (unit_lower_tr_of_(A1)**T) * W2 | |||
| *> end if | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2] | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> end if | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> | |||
| *> else | |||
| *> | |||
| *> (Second Step - column block 1) | |||
| *> | |||
| *> col1_(1) W1: = A1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(2) W1: = (V1**T) * W1 | |||
| *> = (unit_lower_tr_of_(A1)**T) * W1 | |||
| *> end if | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) | |||
| *> end if | |||
| *> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) | |||
| *> | |||
| *> end if | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| $ WORK, LDWORK ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK auxiliary routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| CHARACTER IDENT | |||
| INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ONE, ZERO | |||
| PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LNOTIDENT | |||
| INTEGER I, J | |||
| * .. | |||
| * .. EXTERNAL FUNCTIONS .. | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL DCOPY, DGEMM, DTRMM | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N ) | |||
| $ RETURN | |||
| * | |||
| LNOTIDENT = .NOT.LSAME( IDENT, 'I' ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * First Step. Computation of the Column Block 2: | |||
| * | |||
| * ( A2 ) := H * ( A2 ) | |||
| * ( B2 ) ( B2 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| IF( N.GT.K ) THEN | |||
| * | |||
| * col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N) | |||
| * into W2=WORK(1:K, 1:N-K) column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| CALL DCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2, | |||
| * V1 is not an identy matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| * | |||
| CALL DTRMM( 'L', 'L', 'T', 'U', K, N-K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL DGEMM( 'T', 'N', K, N-K, M, ONE, B, LDB, | |||
| $ B( 1, K+1 ), LDB, ONE, WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(4) Compute W2: = T * W2, | |||
| * T is upper-triangular. | |||
| * | |||
| CALL DTRMM( 'L', 'U', 'N', 'N', K, N-K, ONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2, | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL DGEMM( 'N', 'N', M, N-K, K, -ONE, B, LDB, | |||
| $ WORK, LDWORK, ONE, B( 1, K+1 ), LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(6) Compute W2: = V1 * W2 = A1 * W2, | |||
| * V1 is not an identity matrix, but unit lower-triangular, | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| CALL DTRMM( 'L', 'L', 'N', 'U', K, N-K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(7) Compute A2: = A2 - W2 = | |||
| * = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K), | |||
| * column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| DO I = 1, K | |||
| A( I, K+J ) = A( I, K+J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * Second Step. Computation of the Column Block 1: | |||
| * | |||
| * ( A1 ) := H * ( A1 ) | |||
| * ( B1 ) ( 0 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * col1_(1) Compute W1: = A1. Copy the upper-triangular | |||
| * A1 = A(1:K, 1:K) into the upper-triangular | |||
| * W1 = WORK(1:K, 1:K) column-by-column. | |||
| * | |||
| DO J = 1, K | |||
| CALL DCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| * | |||
| * Set the subdiagonal elements of W1 to zero column-by-column. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| WORK( I, J ) = ZERO | |||
| END DO | |||
| END DO | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL DTRMM( 'L', 'L', 'T', 'U', K, K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col1_(3) Compute W1: = T * W1, | |||
| * T is upper-triangular, | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(4) Compute B1: = - V2 * W1 = - B1 * W1, | |||
| * V2 = B1, W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL DTRMM( 'R', 'U', 'N', 'N', M, K, -ONE, WORK, LDWORK, | |||
| $ B, LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(5) Compute W1: = V1 * W1 = A1 * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular on input with zeroes below the diagonal, | |||
| * and square on output. | |||
| * | |||
| CALL DTRMM( 'L', 'L', 'N', 'U', K, K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K) | |||
| * column-by-column. A1 is upper-triangular on input. | |||
| * If IDENT, A1 is square on output, and W1 is square, | |||
| * if NOT IDENT, A1 is upper-triangular on output, | |||
| * W1 is upper-triangular. | |||
| * | |||
| * col1_(6)_a Compute elements of A1 below the diagonal. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| A( I, J ) = - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * col1_(6)_b Compute elements of A1 on and above the diagonal. | |||
| * | |||
| DO J = 1, K | |||
| DO I = 1, J | |||
| A( I, J ) = A( I, J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| RETURN | |||
| * | |||
| * End of DLARFB_GETT | |||
| * | |||
| END | |||
| @@ -0,0 +1,379 @@ | |||
| *> \brief \b DORGTSQR_ROW | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download DORGTSQR_ROW + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr_row.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr_row.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr_row.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> DORGTSQR_ROW generates an M-by-N real matrix Q_out with | |||
| *> orthonormal columns from the output of DLATSQR. These N orthonormal | |||
| *> columns are the first N columns of a product of complex unitary | |||
| *> matrices Q(k)_in of order M, which are returned by DLATSQR in | |||
| *> a special format. | |||
| *> | |||
| *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). | |||
| *> | |||
| *> The input matrices Q(k)_in are stored in row and column blocks in A. | |||
| *> See the documentation of DLATSQR for more details on the format of | |||
| *> Q(k)_in, where each Q(k)_in is represented by block Householder | |||
| *> transformations. This routine calls an auxiliary routine DLARFB_GETT, | |||
| *> where the computation is performed on each individual block. The | |||
| *> algorithm first sweeps NB-sized column blocks from the right to left | |||
| *> starting in the bottom row block and continues to the top row block | |||
| *> (hence _ROW in the routine name). This sweep is in reverse order of | |||
| *> the order in which DLATSQR generates the output blocks. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB | |||
| *> \verbatim | |||
| *> MB is INTEGER | |||
| *> The row block size used by DLATSQR to return | |||
| *> arrays A and T. MB > N. | |||
| *> (Note that if MB > M, then M is used instead of MB | |||
| *> as the row block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB | |||
| *> \verbatim | |||
| *> NB is INTEGER | |||
| *> The column block size used by DLATSQR to return | |||
| *> arrays A and T. NB >= 1. | |||
| *> (Note that if NB > N, then N is used instead of NB | |||
| *> as the column block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is DOUBLE PRECISION array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> | |||
| *> The elements on and above the diagonal are not used as | |||
| *> input. The elements below the diagonal represent the unit | |||
| *> lower-trapezoidal blocked matrix V computed by DLATSQR | |||
| *> that defines the input matrices Q_in(k) (ones on the | |||
| *> diagonal are not stored). See DLATSQR for more details. | |||
| *> | |||
| *> On exit: | |||
| *> | |||
| *> The array A contains an M-by-N orthonormal matrix Q_out, | |||
| *> i.e the columns of A are orthogonal unit vectors. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is DOUBLE PRECISION array, | |||
| *> dimension (LDT, N * NIRB) | |||
| *> where NIRB = Number_of_input_row_blocks | |||
| *> = MAX( 1, CEIL((M-N)/(MB-N)) ) | |||
| *> Let NICB = Number_of_input_col_blocks | |||
| *> = CEIL(N/NB) | |||
| *> | |||
| *> The upper-triangular block reflectors used to define the | |||
| *> input matrices Q_in(k), k=(1:NIRB*NICB). The block | |||
| *> reflectors are stored in compact form in NIRB block | |||
| *> reflector sequences. Each of the NIRB block reflector | |||
| *> sequences is stored in a larger NB-by-N column block of T | |||
| *> and consists of NICB smaller NB-by-NB upper-triangular | |||
| *> column blocks. See DLATSQR for more details on the format | |||
| *> of T. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. | |||
| *> LDT >= max(1,min(NB,N)). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), | |||
| *> where NBLOCAL=MIN(NB,N). | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| *> | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup doubleOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ONE, ZERO | |||
| PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM, | |||
| $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB, | |||
| $ KB, KB_LAST, KNB, MB1 | |||
| * .. | |||
| * .. Local Arrays .. | |||
| DOUBLE PRECISION DUMMY( 1, 1 ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL DLARFB_GETT, DLASET, XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC DBLE, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input parameters | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN | |||
| INFO = -8 | |||
| ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -10 | |||
| END IF | |||
| * | |||
| NBLOCAL = MIN( NB, N ) | |||
| * | |||
| * Determine the workspace size. | |||
| * | |||
| IF( INFO.EQ.0 ) THEN | |||
| LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) ) | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and handle the workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'DORGTSQR_ROW', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * (0) Set the upper-triangular part of the matrix A to zero and | |||
| * its diagonal elements to one. | |||
| * | |||
| CALL DLASET('U', M, N, ZERO, ONE, A, LDA ) | |||
| * | |||
| * KB_LAST is the column index of the last column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1 | |||
| * | |||
| * | |||
| * (1) Bottom-up loop over row blocks of A, except the top row block. | |||
| * NOTE: If MB>=M, then the loop is never executed. | |||
| * | |||
| IF ( MB.LT.M ) THEN | |||
| * | |||
| * MB2 is the row blocking size for the row blocks before the | |||
| * first top row block in the matrix A. IB is the row index for | |||
| * the row blocks in the matrix A before the first top row block. | |||
| * IB_BOTTOM is the row index for the last bottom row block | |||
| * in the matrix A. JB_T is the column index of the corresponding | |||
| * column block in the matrix T. | |||
| * | |||
| * Initialize variables. | |||
| * | |||
| * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A | |||
| * including the first row block. | |||
| * | |||
| MB2 = MB - N | |||
| M_PLUS_ONE = M + 1 | |||
| ITMP = ( M - MB - 1 ) / MB2 | |||
| IB_BOTTOM = ITMP * MB2 + MB + 1 | |||
| NUM_ALL_ROW_BLOCKS = ITMP + 2 | |||
| JB_T = NUM_ALL_ROW_BLOCKS * N + 1 | |||
| * | |||
| DO IB = IB_BOTTOM, MB+1, -MB2 | |||
| * | |||
| * Determine the block size IMB for the current row block | |||
| * in the matrix A. | |||
| * | |||
| IMB = MIN( M_PLUS_ONE - IB, MB2 ) | |||
| * | |||
| * Determine the column index JB_T for the current column block | |||
| * in the matrix T. | |||
| * | |||
| JB_T = JB_T - N | |||
| * | |||
| * Apply column blocks of H in the row block from right to left. | |||
| * | |||
| * KB is the column index of the current column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| CALL DLARFB_GETT( 'I', IMB, N-KB+1, KNB, | |||
| $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA, | |||
| $ A( IB, KB ), LDA, WORK, KNB ) | |||
| * | |||
| END DO | |||
| * | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * (2) Top row block of A. | |||
| * NOTE: If MB>=M, then we have only one row block of A of size M | |||
| * and we work on the entire matrix A. | |||
| * | |||
| MB1 = MIN( MB, M ) | |||
| * | |||
| * Apply column blocks of H in the top row block from right to left. | |||
| * | |||
| * KB is the column index of the current block reflector in | |||
| * the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| IF( MB1-KB-KNB+1.EQ.0 ) THEN | |||
| * | |||
| * In SLARFB_GETT parameters, when M=0, then the matrix B | |||
| * does not exist, hence we need to pass a dummy array | |||
| * reference DUMMY(1,1) to B with LDDUMMY=1. | |||
| * | |||
| CALL DLARFB_GETT( 'N', 0, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ DUMMY( 1, 1 ), 1, WORK, KNB ) | |||
| ELSE | |||
| CALL DLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ A( KB+KNB, KB), LDA, WORK, KNB ) | |||
| END IF | |||
| * | |||
| END DO | |||
| * | |||
| WORK( 1 ) = DBLE( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of DORGTSQR_ROW | |||
| * | |||
| END | |||
| @@ -0,0 +1,349 @@ | |||
| *> \brief \b SGETSQRHRT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download SGETSQRHRT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetsqrhrt.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetsqrhrt.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetsqrhrt.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * REAL A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SGETSQRHRT computes a NB2-sized column blocked QR-factorization | |||
| *> of a complex M-by-N matrix A with M >= N, | |||
| *> | |||
| *> A = Q * R. | |||
| *> | |||
| *> The routine uses internally a NB1-sized column blocked and MB1-sized | |||
| *> row blocked TSQR-factorization and perfors the reconstruction | |||
| *> of the Householder vectors from the TSQR output. The routine also | |||
| *> converts the R_tsqr factor from the TSQR-factorization output into | |||
| *> the R factor that corresponds to the Householder QR-factorization, | |||
| *> | |||
| *> A = Q_tsqr * R_tsqr = Q * R. | |||
| *> | |||
| *> The output Q and R factors are stored in the same format as in SGEQRT | |||
| *> (Q is in blocked compact WY-representation). See the documentation | |||
| *> of SGEQRT for more details on the format. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> The row block size to be used in the blocked TSQR. | |||
| *> MB1 > N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> The column block size to be used in the blocked TSQR. | |||
| *> N >= NB1 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> The block size to be used in the blocked QR that is | |||
| *> output. NB2 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is REAL array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: an M-by-N matrix A. | |||
| *> | |||
| *> On exit: | |||
| *> a) the elements on and above the diagonal | |||
| *> of the array contain the N-by-N upper-triangular | |||
| *> matrix R corresponding to the Householder QR; | |||
| *> b) the elements below the diagonal represent Q by | |||
| *> the columns of blocked V (compact WY-representation). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] T | |||
| *> \verbatim | |||
| *> T is REAL array, dimension (LDT,N)) | |||
| *> The upper triangular block reflectors stored in compact form | |||
| *> as a sequence of upper triangular blocks. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= NB2. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) REAL array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), | |||
| *> where | |||
| *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), | |||
| *> NB1LOCAL = MIN(NB1,N). | |||
| *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, | |||
| *> LW1 = NB1LOCAL * N, | |||
| *> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup singleOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| REAL A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ONE | |||
| PARAMETER ( ONE = 1.0E+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, | |||
| $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL SCOPY, SLATSQR, SORGTSQR_ROW, SORHR_COL, | |||
| $ XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input arguments | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB1.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB1.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( NB2.LT.1 ) THEN | |||
| INFO = -5 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN | |||
| INFO = -9 | |||
| ELSE | |||
| * | |||
| * Test the input LWORK for the dimension of the array WORK. | |||
| * This workspace is used to store array: | |||
| * a) Matrix T and WORK for SLATSQR; | |||
| * b) N-by-N upper-triangular factor R_tsqr; | |||
| * c) Matrix T and array WORK for SORGTSQR_ROW; | |||
| * d) Diagonal D for SORHR_COL. | |||
| * | |||
| IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -11 | |||
| ELSE | |||
| * | |||
| * Set block size for column blocks | |||
| * | |||
| NB1LOCAL = MIN( NB1, N ) | |||
| * | |||
| NUM_ALL_ROW_BLOCKS = MAX( 1, | |||
| $ CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) | |||
| * | |||
| * Length and leading dimension of WORK array to place | |||
| * T array in TSQR. | |||
| * | |||
| LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL | |||
| LDWT = NB1LOCAL | |||
| * | |||
| * Length of TSQR work array | |||
| * | |||
| LW1 = NB1LOCAL * N | |||
| * | |||
| * Length of SORGTSQR_ROW work array. | |||
| * | |||
| LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) | |||
| * | |||
| LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) | |||
| * | |||
| IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN | |||
| INFO = -11 | |||
| END IF | |||
| * | |||
| END IF | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and return workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'SGETSQRHRT', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| NB2LOCAL = MIN( NB2, N ) | |||
| * | |||
| * | |||
| * (1) Perform TSQR-factorization of the M-by-N matrix A. | |||
| * | |||
| CALL SLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK(LWT+1), LW1, IINFO ) | |||
| * | |||
| * (2) Copy the factor R_tsqr stored in the upper-triangular part | |||
| * of A into the square matrix in the work array | |||
| * WORK(LWT+1:LWT+N*N) column-by-column. | |||
| * | |||
| DO J = 1, N | |||
| CALL SCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 ) | |||
| END DO | |||
| * | |||
| * (3) Generate a M-by-N matrix Q with orthonormal columns from | |||
| * the result stored below the diagonal in the array A in place. | |||
| * | |||
| CALL SORGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK( LWT+N*N+1 ), LW2, IINFO ) | |||
| * | |||
| * (4) Perform the reconstruction of Householder vectors from | |||
| * the matrix Q (stored in A) in place. | |||
| * | |||
| CALL SORHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT, | |||
| $ WORK( LWT+N*N+1 ), IINFO ) | |||
| * | |||
| * (5) Copy the factor R_tsqr stored in the square matrix in the | |||
| * work array WORK(LWT+1:LWT+N*N) into the upper-triangular | |||
| * part of A. | |||
| * | |||
| * (6) Compute from R_tsqr the factor R_hr corresponding to | |||
| * the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. | |||
| * This multiplication by the sign matrix S on the left means | |||
| * changing the sign of I-th row of the matrix R_tsqr according | |||
| * to sign of the I-th diagonal element DIAG(I) of the matrix S. | |||
| * DIAG is stored in WORK( LWT+N*N+1 ) from the SORHR_COL output. | |||
| * | |||
| * (5) and (6) can be combined in a single loop, so the rows in A | |||
| * are accessed only once. | |||
| * | |||
| DO I = 1, N | |||
| IF( WORK( LWT+N*N+I ).EQ.-ONE ) THEN | |||
| DO J = I, N | |||
| A( I, J ) = -ONE * WORK( LWT+N*(J-1)+I ) | |||
| END DO | |||
| ELSE | |||
| CALL SCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA ) | |||
| END IF | |||
| END DO | |||
| * | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of SGETSQRHRT | |||
| * | |||
| END | |||
| @@ -0,0 +1,596 @@ | |||
| *> \brief \b SLARFB_GETT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download SLARFB_GETT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb_gett.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb_gett.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb_gett.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE SLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| * $ WORK, LDWORK ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * CHARACTER IDENT | |||
| * INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| * $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SLARFB_GETT applies a real Householder block reflector H from the | |||
| *> left to a real (K+M)-by-N "triangular-pentagonal" matrix | |||
| *> composed of two block matrices: an upper trapezoidal K-by-N matrix A | |||
| *> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored | |||
| *> in the array B. The block reflector H is stored in a compact | |||
| *> WY-representation, where the elementary reflectors are in the | |||
| *> arrays A, B and T. See Further Details section. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] IDENT | |||
| *> \verbatim | |||
| *> IDENT is CHARACTER*1 | |||
| *> If IDENT = not 'I', or not 'i', then V1 is unit | |||
| *> lower-triangular and stored in the left K-by-K block of | |||
| *> the input matrix A, | |||
| *> If IDENT = 'I' or 'i', then V1 is an identity matrix and | |||
| *> not stored. | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix B. | |||
| *> M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrices A and B. | |||
| *> N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] K | |||
| *> \verbatim | |||
| *> K is INTEGER | |||
| *> The number or rows of the matrix A. | |||
| *> K is also order of the matrix T, i.e. the number of | |||
| *> elementary reflectors whose product defines the block | |||
| *> reflector. 0 <= K <= N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is REAL array, dimension (LDT,K) | |||
| *> The upper-triangular K-by-K matrix T in the representation | |||
| *> of the block reflector. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= K. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is REAL array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the K-by-N upper-trapezoidal part A: input matrix A. | |||
| *> b) In the columns below the diagonal: columns of V1 | |||
| *> (ones are not stored on the diagonal). | |||
| *> | |||
| *> On exit: | |||
| *> A is overwritten by rectangular K-by-N product H*A. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,K). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] B | |||
| *> \verbatim | |||
| *> B is REAL array, dimension (LDB,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the M-by-(N-K) right block: input matrix B. | |||
| *> b) In the M-by-N left block: columns of V2. | |||
| *> | |||
| *> On exit: | |||
| *> B is overwritten by rectangular M-by-N product H*B. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDB | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array B. LDB >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> WORK is REAL array, | |||
| *> dimension (LDWORK,max(K,N-K)) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDWORK | |||
| *> \verbatim | |||
| *> LDWORK is INTEGER | |||
| *> The leading dimension of the array WORK. LDWORK>=max(1,K). | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup singleOTHERauxiliary | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| *> \par Further Details: | |||
| * ===================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> (1) Description of the Algebraic Operation. | |||
| *> | |||
| *> The matrix A is a K-by-N matrix composed of two column block | |||
| *> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): | |||
| *> A = ( A1, A2 ). | |||
| *> The matrix B is an M-by-N matrix composed of two column block | |||
| *> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): | |||
| *> B = ( B1, B2 ). | |||
| *> | |||
| *> Perform the operation: | |||
| *> | |||
| *> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) = | |||
| *> ( B_out ) ( B_in ) ( B_in ) | |||
| *> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in ) | |||
| *> ( V2 ) ( B_in ) | |||
| *> On input: | |||
| *> | |||
| *> a) ( A_in ) consists of two block columns: | |||
| *> ( B_in ) | |||
| *> | |||
| *> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) | |||
| *> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_in ) is a K-by-K upper-triangular matrix stored in the | |||
| *> upper triangular part of the array A(1:K,1:K). | |||
| *> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored. | |||
| *> | |||
| *> ( A2_in ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_in ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> b) V = ( V1 ) | |||
| *> ( V2 ) | |||
| *> | |||
| *> where: | |||
| *> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; | |||
| *> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, | |||
| *> stored in the lower-triangular part of the array | |||
| *> A(1:K,1:K) (ones are not stored), | |||
| *> and V2 is an M-by-K rectangular stored the array B(1:M,1:K), | |||
| *> (because on input B1_in is a rectangular zero | |||
| *> matrix that is not stored and the space is | |||
| *> used to store V2). | |||
| *> | |||
| *> c) T is a K-by-K upper-triangular matrix stored | |||
| *> in the array T(1:K,1:K). | |||
| *> | |||
| *> On output: | |||
| *> | |||
| *> a) ( A_out ) consists of two block columns: | |||
| *> ( B_out ) | |||
| *> | |||
| *> ( A_out ) = (( A1_out ) ( A2_out )) | |||
| *> ( B_out ) (( B1_out ) ( B2_out )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_out ) is a K-by-K square matrix, or a K-by-K | |||
| *> upper-triangular matrix, if V1 is an | |||
| *> identity matrix. AiOut is stored in | |||
| *> the array A(1:K,1:K). | |||
| *> ( B1_out ) is an M-by-K rectangular matrix stored | |||
| *> in the array B(1:M,K:N). | |||
| *> | |||
| *> ( A2_out ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_out ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> | |||
| *> The operation above can be represented as the same operation | |||
| *> on each block column: | |||
| *> | |||
| *> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in ) | |||
| *> ( B1_out ) ( 0 ) ( 0 ) | |||
| *> | |||
| *> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in ) | |||
| *> ( B2_out ) ( B2_in ) ( B2_in ) | |||
| *> | |||
| *> If IDENT != 'I': | |||
| *> | |||
| *> The computation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*(V1**T)*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*(V1**T)*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> If IDENT == 'I': | |||
| *> | |||
| *> The operation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T**A1_in | |||
| *> | |||
| *> B1_out: = - V2*T**A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in ) | |||
| *> | |||
| *> (2) Description of the Algorithmic Computation. | |||
| *> | |||
| *> In the first step, we compute column block 2, i.e. A2 and B2. | |||
| *> Here, we need to use the K-by-(N-K) rectangular workspace | |||
| *> matrix W2 that is of the same size as the matrix A2. | |||
| *> W2 is stored in the array WORK(1:K,1:(N-K)). | |||
| *> | |||
| *> In the second step, we compute column block 1, i.e. A1 and B1. | |||
| *> Here, we need to use the K-by-K square workspace matrix W1 | |||
| *> that is of the same size as the as the matrix A1. | |||
| *> W1 is stored in the array WORK(1:K,1:K). | |||
| *> | |||
| *> NOTE: Hence, in this routine, we need the workspace array WORK | |||
| *> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from | |||
| *> the first step and W1 from the second step. | |||
| *> | |||
| *> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I', | |||
| *> more computations than in the Case (B). | |||
| *> | |||
| *> if( IDENT != 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2 | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6) square A1: = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I', | |||
| *> less computations than in the Case (A) | |||
| *> | |||
| *> if( IDENT == 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(6) upper-triangular_of_(A1): = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Combine these cases (A) and (B) together, this is the resulting | |||
| *> algorithm: | |||
| *> | |||
| *> if ( N > K ) then | |||
| *> | |||
| *> (First Step - column block 2) | |||
| *> | |||
| *> col2_(1) W2: = A2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(2) W2: = (V1**T) * W2 | |||
| *> = (unit_lower_tr_of_(A1)**T) * W2 | |||
| *> end if | |||
| *> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2] | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> end if | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> | |||
| *> else | |||
| *> | |||
| *> (Second Step - column block 1) | |||
| *> | |||
| *> col1_(1) W1: = A1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(2) W1: = (V1**T) * W1 | |||
| *> = (unit_lower_tr_of_(A1)**T) * W1 | |||
| *> end if | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) | |||
| *> end if | |||
| *> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) | |||
| *> | |||
| *> end if | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE SLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| $ WORK, LDWORK ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK auxiliary routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| CHARACTER IDENT | |||
| INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ONE, ZERO | |||
| PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LNOTIDENT | |||
| INTEGER I, J | |||
| * .. | |||
| * .. EXTERNAL FUNCTIONS .. | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL SCOPY, SGEMM, STRMM | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N ) | |||
| $ RETURN | |||
| * | |||
| LNOTIDENT = .NOT.LSAME( IDENT, 'I' ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * First Step. Computation of the Column Block 2: | |||
| * | |||
| * ( A2 ) := H * ( A2 ) | |||
| * ( B2 ) ( B2 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| IF( N.GT.K ) THEN | |||
| * | |||
| * col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N) | |||
| * into W2=WORK(1:K, 1:N-K) column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| CALL SCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2, | |||
| * V1 is not an identy matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| * | |||
| CALL STRMM( 'L', 'L', 'T', 'U', K, N-K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL SGEMM( 'T', 'N', K, N-K, M, ONE, B, LDB, | |||
| $ B( 1, K+1 ), LDB, ONE, WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(4) Compute W2: = T * W2, | |||
| * T is upper-triangular. | |||
| * | |||
| CALL STRMM( 'L', 'U', 'N', 'N', K, N-K, ONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2, | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL SGEMM( 'N', 'N', M, N-K, K, -ONE, B, LDB, | |||
| $ WORK, LDWORK, ONE, B( 1, K+1 ), LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(6) Compute W2: = V1 * W2 = A1 * W2, | |||
| * V1 is not an identity matrix, but unit lower-triangular, | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| CALL STRMM( 'L', 'L', 'N', 'U', K, N-K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(7) Compute A2: = A2 - W2 = | |||
| * = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K), | |||
| * column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| DO I = 1, K | |||
| A( I, K+J ) = A( I, K+J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * Second Step. Computation of the Column Block 1: | |||
| * | |||
| * ( A1 ) := H * ( A1 ) | |||
| * ( B1 ) ( 0 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * col1_(1) Compute W1: = A1. Copy the upper-triangular | |||
| * A1 = A(1:K, 1:K) into the upper-triangular | |||
| * W1 = WORK(1:K, 1:K) column-by-column. | |||
| * | |||
| DO J = 1, K | |||
| CALL SCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| * | |||
| * Set the subdiagonal elements of W1 to zero column-by-column. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| WORK( I, J ) = ZERO | |||
| END DO | |||
| END DO | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL STRMM( 'L', 'L', 'T', 'U', K, K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col1_(3) Compute W1: = T * W1, | |||
| * T is upper-triangular, | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL STRMM( 'L', 'U', 'N', 'N', K, K, ONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(4) Compute B1: = - V2 * W1 = - B1 * W1, | |||
| * V2 = B1, W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL STRMM( 'R', 'U', 'N', 'N', M, K, -ONE, WORK, LDWORK, | |||
| $ B, LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(5) Compute W1: = V1 * W1 = A1 * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular on input with zeroes below the diagonal, | |||
| * and square on output. | |||
| * | |||
| CALL STRMM( 'L', 'L', 'N', 'U', K, K, ONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K) | |||
| * column-by-column. A1 is upper-triangular on input. | |||
| * If IDENT, A1 is square on output, and W1 is square, | |||
| * if NOT IDENT, A1 is upper-triangular on output, | |||
| * W1 is upper-triangular. | |||
| * | |||
| * col1_(6)_a Compute elements of A1 below the diagonal. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| A( I, J ) = - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * col1_(6)_b Compute elements of A1 on and above the diagonal. | |||
| * | |||
| DO J = 1, K | |||
| DO I = 1, J | |||
| A( I, J ) = A( I, J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| RETURN | |||
| * | |||
| * End of SLARFB_GETT | |||
| * | |||
| END | |||
| @@ -0,0 +1,379 @@ | |||
| *> \brief \b SORGTSQR_ROW | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download SORGTSQR_ROW + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr_row.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr_row.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr_row.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * REAL A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> SORGTSQR_ROW generates an M-by-N real matrix Q_out with | |||
| *> orthonormal columns from the output of SLATSQR. These N orthonormal | |||
| *> columns are the first N columns of a product of complex unitary | |||
| *> matrices Q(k)_in of order M, which are returned by SLATSQR in | |||
| *> a special format. | |||
| *> | |||
| *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). | |||
| *> | |||
| *> The input matrices Q(k)_in are stored in row and column blocks in A. | |||
| *> See the documentation of SLATSQR for more details on the format of | |||
| *> Q(k)_in, where each Q(k)_in is represented by block Householder | |||
| *> transformations. This routine calls an auxiliary routine SLARFB_GETT, | |||
| *> where the computation is performed on each individual block. The | |||
| *> algorithm first sweeps NB-sized column blocks from the right to left | |||
| *> starting in the bottom row block and continues to the top row block | |||
| *> (hence _ROW in the routine name). This sweep is in reverse order of | |||
| *> the order in which SLATSQR generates the output blocks. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB | |||
| *> \verbatim | |||
| *> MB is INTEGER | |||
| *> The row block size used by SLATSQR to return | |||
| *> arrays A and T. MB > N. | |||
| *> (Note that if MB > M, then M is used instead of MB | |||
| *> as the row block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB | |||
| *> \verbatim | |||
| *> NB is INTEGER | |||
| *> The column block size used by SLATSQR to return | |||
| *> arrays A and T. NB >= 1. | |||
| *> (Note that if NB > N, then N is used instead of NB | |||
| *> as the column block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is REAL array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> | |||
| *> The elements on and above the diagonal are not used as | |||
| *> input. The elements below the diagonal represent the unit | |||
| *> lower-trapezoidal blocked matrix V computed by SLATSQR | |||
| *> that defines the input matrices Q_in(k) (ones on the | |||
| *> diagonal are not stored). See SLATSQR for more details. | |||
| *> | |||
| *> On exit: | |||
| *> | |||
| *> The array A contains an M-by-N orthonormal matrix Q_out, | |||
| *> i.e the columns of A are orthogonal unit vectors. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is REAL array, | |||
| *> dimension (LDT, N * NIRB) | |||
| *> where NIRB = Number_of_input_row_blocks | |||
| *> = MAX( 1, CEIL((M-N)/(MB-N)) ) | |||
| *> Let NICB = Number_of_input_col_blocks | |||
| *> = CEIL(N/NB) | |||
| *> | |||
| *> The upper-triangular block reflectors used to define the | |||
| *> input matrices Q_in(k), k=(1:NIRB*NICB). The block | |||
| *> reflectors are stored in compact form in NIRB block | |||
| *> reflector sequences. Each of the NIRB block reflector | |||
| *> sequences is stored in a larger NB-by-N column block of T | |||
| *> and consists of NICB smaller NB-by-NB upper-triangular | |||
| *> column blocks. See SLATSQR for more details on the format | |||
| *> of T. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. | |||
| *> LDT >= max(1,min(NB,N)). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) REAL array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), | |||
| *> where NBLOCAL=MIN(NB,N). | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| *> | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup sigleOTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| REAL A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ONE, ZERO | |||
| PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM, | |||
| $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB, | |||
| $ KB, KB_LAST, KNB, MB1 | |||
| * .. | |||
| * .. Local Arrays .. | |||
| REAL DUMMY( 1, 1 ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL SLARFB_GETT, SLASET, XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC REAL, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input parameters | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN | |||
| INFO = -8 | |||
| ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -10 | |||
| END IF | |||
| * | |||
| NBLOCAL = MIN( NB, N ) | |||
| * | |||
| * Determine the workspace size. | |||
| * | |||
| IF( INFO.EQ.0 ) THEN | |||
| LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) ) | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and handle the workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'SORGTSQR_ROW', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * (0) Set the upper-triangular part of the matrix A to zero and | |||
| * its diagonal elements to one. | |||
| * | |||
| CALL SLASET('U', M, N, ZERO, ONE, A, LDA ) | |||
| * | |||
| * KB_LAST is the column index of the last column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1 | |||
| * | |||
| * | |||
| * (1) Bottom-up loop over row blocks of A, except the top row block. | |||
| * NOTE: If MB>=M, then the loop is never executed. | |||
| * | |||
| IF ( MB.LT.M ) THEN | |||
| * | |||
| * MB2 is the row blocking size for the row blocks before the | |||
| * first top row block in the matrix A. IB is the row index for | |||
| * the row blocks in the matrix A before the first top row block. | |||
| * IB_BOTTOM is the row index for the last bottom row block | |||
| * in the matrix A. JB_T is the column index of the corresponding | |||
| * column block in the matrix T. | |||
| * | |||
| * Initialize variables. | |||
| * | |||
| * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A | |||
| * including the first row block. | |||
| * | |||
| MB2 = MB - N | |||
| M_PLUS_ONE = M + 1 | |||
| ITMP = ( M - MB - 1 ) / MB2 | |||
| IB_BOTTOM = ITMP * MB2 + MB + 1 | |||
| NUM_ALL_ROW_BLOCKS = ITMP + 2 | |||
| JB_T = NUM_ALL_ROW_BLOCKS * N + 1 | |||
| * | |||
| DO IB = IB_BOTTOM, MB+1, -MB2 | |||
| * | |||
| * Determine the block size IMB for the current row block | |||
| * in the matrix A. | |||
| * | |||
| IMB = MIN( M_PLUS_ONE - IB, MB2 ) | |||
| * | |||
| * Determine the column index JB_T for the current column block | |||
| * in the matrix T. | |||
| * | |||
| JB_T = JB_T - N | |||
| * | |||
| * Apply column blocks of H in the row block from right to left. | |||
| * | |||
| * KB is the column index of the current column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| CALL SLARFB_GETT( 'I', IMB, N-KB+1, KNB, | |||
| $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA, | |||
| $ A( IB, KB ), LDA, WORK, KNB ) | |||
| * | |||
| END DO | |||
| * | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * (2) Top row block of A. | |||
| * NOTE: If MB>=M, then we have only one row block of A of size M | |||
| * and we work on the entire matrix A. | |||
| * | |||
| MB1 = MIN( MB, M ) | |||
| * | |||
| * Apply column blocks of H in the top row block from right to left. | |||
| * | |||
| * KB is the column index of the current block reflector in | |||
| * the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| IF( MB1-KB-KNB+1.EQ.0 ) THEN | |||
| * | |||
| * In SLARFB_GETT parameters, when M=0, then the matrix B | |||
| * does not exist, hence we need to pass a dummy array | |||
| * reference DUMMY(1,1) to B with LDDUMMY=1. | |||
| * | |||
| CALL SLARFB_GETT( 'N', 0, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ DUMMY( 1, 1 ), 1, WORK, KNB ) | |||
| ELSE | |||
| CALL SLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ A( KB+KNB, KB), LDA, WORK, KNB ) | |||
| END IF | |||
| * | |||
| END DO | |||
| * | |||
| WORK( 1 ) = REAL( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of SORGTSQR_ROW | |||
| * | |||
| END | |||
| @@ -0,0 +1,349 @@ | |||
| *> \brief \b ZGETSQRHRT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download ZGETSQRHRT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetsqrhrt.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetsqrhrt.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetsqrhrt.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZGETSQRHRT computes a NB2-sized column blocked QR-factorization | |||
| *> of a complex M-by-N matrix A with M >= N, | |||
| *> | |||
| *> A = Q * R. | |||
| *> | |||
| *> The routine uses internally a NB1-sized column blocked and MB1-sized | |||
| *> row blocked TSQR-factorization and perfors the reconstruction | |||
| *> of the Householder vectors from the TSQR output. The routine also | |||
| *> converts the R_tsqr factor from the TSQR-factorization output into | |||
| *> the R factor that corresponds to the Householder QR-factorization, | |||
| *> | |||
| *> A = Q_tsqr * R_tsqr = Q * R. | |||
| *> | |||
| *> The output Q and R factors are stored in the same format as in ZGEQRT | |||
| *> (Q is in blocked compact WY-representation). See the documentation | |||
| *> of ZGEQRT for more details on the format. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB1 | |||
| *> \verbatim | |||
| *> MB1 is INTEGER | |||
| *> The row block size to be used in the blocked TSQR. | |||
| *> MB1 > N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB1 | |||
| *> \verbatim | |||
| *> NB1 is INTEGER | |||
| *> The column block size to be used in the blocked TSQR. | |||
| *> N >= NB1 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB2 | |||
| *> \verbatim | |||
| *> NB2 is INTEGER | |||
| *> The block size to be used in the blocked QR that is | |||
| *> output. NB2 >= 1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX*16 array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: an M-by-N matrix A. | |||
| *> | |||
| *> On exit: | |||
| *> a) the elements on and above the diagonal | |||
| *> of the array contain the N-by-N upper-triangular | |||
| *> matrix R corresponding to the Householder QR; | |||
| *> b) the elements below the diagonal represent Q by | |||
| *> the columns of blocked V (compact WY-representation). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] T | |||
| *> \verbatim | |||
| *> T is COMPLEX*16 array, dimension (LDT,N)) | |||
| *> The upper triangular block reflectors stored in compact form | |||
| *> as a sequence of upper triangular blocks. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= NB2. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), | |||
| *> where | |||
| *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), | |||
| *> NB1LOCAL = MIN(NB1,N). | |||
| *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, | |||
| *> LW1 = NB1LOCAL * N, | |||
| *> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup comlpex16OTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1 | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX*16 CONE | |||
| PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, | |||
| $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ZCOPY, ZLATSQR, ZUNGTSQR_ROW, ZUNHR_COL, | |||
| $ XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC CEILING, DBLE, DCMPLX, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input arguments | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB1.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB1.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( NB2.LT.1 ) THEN | |||
| INFO = -5 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN | |||
| INFO = -9 | |||
| ELSE | |||
| * | |||
| * Test the input LWORK for the dimension of the array WORK. | |||
| * This workspace is used to store array: | |||
| * a) Matrix T and WORK for ZLATSQR; | |||
| * b) N-by-N upper-triangular factor R_tsqr; | |||
| * c) Matrix T and array WORK for ZUNGTSQR_ROW; | |||
| * d) Diagonal D for ZUNHR_COL. | |||
| * | |||
| IF( LWORK.LT.N*N+1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -11 | |||
| ELSE | |||
| * | |||
| * Set block size for column blocks | |||
| * | |||
| NB1LOCAL = MIN( NB1, N ) | |||
| * | |||
| NUM_ALL_ROW_BLOCKS = MAX( 1, | |||
| $ CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) ) | |||
| * | |||
| * Length and leading dimension of WORK array to place | |||
| * T array in TSQR. | |||
| * | |||
| LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL | |||
| LDWT = NB1LOCAL | |||
| * | |||
| * Length of TSQR work array | |||
| * | |||
| LW1 = NB1LOCAL * N | |||
| * | |||
| * Length of ZUNGTSQR_ROW work array. | |||
| * | |||
| LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) | |||
| * | |||
| LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) | |||
| * | |||
| IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN | |||
| INFO = -11 | |||
| END IF | |||
| * | |||
| END IF | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and return workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'ZGETSQRHRT', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| NB2LOCAL = MIN( NB2, N ) | |||
| * | |||
| * | |||
| * (1) Perform TSQR-factorization of the M-by-N matrix A. | |||
| * | |||
| CALL ZLATSQR( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK(LWT+1), LW1, IINFO ) | |||
| * | |||
| * (2) Copy the factor R_tsqr stored in the upper-triangular part | |||
| * of A into the square matrix in the work array | |||
| * WORK(LWT+1:LWT+N*N) column-by-column. | |||
| * | |||
| DO J = 1, N | |||
| CALL ZCOPY( J, A( 1, J ), 1, WORK( LWT + N*(J-1)+1 ), 1 ) | |||
| END DO | |||
| * | |||
| * (3) Generate a M-by-N matrix Q with orthonormal columns from | |||
| * the result stored below the diagonal in the array A in place. | |||
| * | |||
| CALL ZUNGTSQR_ROW( M, N, MB1, NB1LOCAL, A, LDA, WORK, LDWT, | |||
| $ WORK( LWT+N*N+1 ), LW2, IINFO ) | |||
| * | |||
| * (4) Perform the reconstruction of Householder vectors from | |||
| * the matrix Q (stored in A) in place. | |||
| * | |||
| CALL ZUNHR_COL( M, N, NB2LOCAL, A, LDA, T, LDT, | |||
| $ WORK( LWT+N*N+1 ), IINFO ) | |||
| * | |||
| * (5) Copy the factor R_tsqr stored in the square matrix in the | |||
| * work array WORK(LWT+1:LWT+N*N) into the upper-triangular | |||
| * part of A. | |||
| * | |||
| * (6) Compute from R_tsqr the factor R_hr corresponding to | |||
| * the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr. | |||
| * This multiplication by the sign matrix S on the left means | |||
| * changing the sign of I-th row of the matrix R_tsqr according | |||
| * to sign of the I-th diagonal element DIAG(I) of the matrix S. | |||
| * DIAG is stored in WORK( LWT+N*N+1 ) from the ZUNHR_COL output. | |||
| * | |||
| * (5) and (6) can be combined in a single loop, so the rows in A | |||
| * are accessed only once. | |||
| * | |||
| DO I = 1, N | |||
| IF( WORK( LWT+N*N+I ).EQ.-CONE ) THEN | |||
| DO J = I, N | |||
| A( I, J ) = -CONE * WORK( LWT+N*(J-1)+I ) | |||
| END DO | |||
| ELSE | |||
| CALL ZCOPY( N-I+1, WORK(LWT+N*(I-1)+I), N, A( I, I ), LDA ) | |||
| END IF | |||
| END DO | |||
| * | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of ZGETSQRHRT | |||
| * | |||
| END | |||
| @@ -0,0 +1,597 @@ | |||
| *> \brief \b ZLARFB_GETT | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download ZLARFB_GETT + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb_gett.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb_gett.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb_gett.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| * $ WORK, LDWORK ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * CHARACTER IDENT | |||
| * INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| * $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZLARFB_GETT applies a complex Householder block reflector H from the | |||
| *> left to a complex (K+M)-by-N "triangular-pentagonal" matrix | |||
| *> composed of two block matrices: an upper trapezoidal K-by-N matrix A | |||
| *> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored | |||
| *> in the array B. The block reflector H is stored in a compact | |||
| *> WY-representation, where the elementary reflectors are in the | |||
| *> arrays A, B and T. See Further Details section. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] IDENT | |||
| *> \verbatim | |||
| *> IDENT is CHARACTER*1 | |||
| *> If IDENT = not 'I', or not 'i', then V1 is unit | |||
| *> lower-triangular and stored in the left K-by-K block of | |||
| *> the input matrix A, | |||
| *> If IDENT = 'I' or 'i', then V1 is an identity matrix and | |||
| *> not stored. | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix B. | |||
| *> M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrices A and B. | |||
| *> N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] K | |||
| *> \verbatim | |||
| *> K is INTEGER | |||
| *> The number or rows of the matrix A. | |||
| *> K is also order of the matrix T, i.e. the number of | |||
| *> elementary reflectors whose product defines the block | |||
| *> reflector. 0 <= K <= N. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is COMPLEX*16 array, dimension (LDT,K) | |||
| *> The upper-triangular K-by-K matrix T in the representation | |||
| *> of the block reflector. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. LDT >= K. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX*16 array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the K-by-N upper-trapezoidal part A: input matrix A. | |||
| *> b) In the columns below the diagonal: columns of V1 | |||
| *> (ones are not stored on the diagonal). | |||
| *> | |||
| *> On exit: | |||
| *> A is overwritten by rectangular K-by-N product H*A. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,K). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] B | |||
| *> \verbatim | |||
| *> B is COMPLEX*16 array, dimension (LDB,N) | |||
| *> | |||
| *> On entry: | |||
| *> a) In the M-by-(N-K) right block: input matrix B. | |||
| *> b) In the M-by-N left block: columns of V2. | |||
| *> | |||
| *> On exit: | |||
| *> B is overwritten by rectangular M-by-N product H*B. | |||
| *> | |||
| *> See Further Details section. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDB | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array B. LDB >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> WORK is COMPLEX*16 array, | |||
| *> dimension (LDWORK,max(K,N-K)) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDWORK | |||
| *> \verbatim | |||
| *> LDWORK is INTEGER | |||
| *> The leading dimension of the array WORK. LDWORK>=max(1,K). | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complex16OTHERauxiliary | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| * | |||
| *> \par Further Details: | |||
| * ===================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> (1) Description of the Algebraic Operation. | |||
| *> | |||
| *> The matrix A is a K-by-N matrix composed of two column block | |||
| *> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): | |||
| *> A = ( A1, A2 ). | |||
| *> The matrix B is an M-by-N matrix composed of two column block | |||
| *> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): | |||
| *> B = ( B1, B2 ). | |||
| *> | |||
| *> Perform the operation: | |||
| *> | |||
| *> ( A_out ) := H * ( A_in ) = ( I - V * T * V**H ) * ( A_in ) = | |||
| *> ( B_out ) ( B_in ) ( B_in ) | |||
| *> = ( I - ( V1 ) * T * ( V1**H, V2**H ) ) * ( A_in ) | |||
| *> ( V2 ) ( B_in ) | |||
| *> On input: | |||
| *> | |||
| *> a) ( A_in ) consists of two block columns: | |||
| *> ( B_in ) | |||
| *> | |||
| *> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) | |||
| *> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_in ) is a K-by-K upper-triangular matrix stored in the | |||
| *> upper triangular part of the array A(1:K,1:K). | |||
| *> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored. | |||
| *> | |||
| *> ( A2_in ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_in ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> b) V = ( V1 ) | |||
| *> ( V2 ) | |||
| *> | |||
| *> where: | |||
| *> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; | |||
| *> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, | |||
| *> stored in the lower-triangular part of the array | |||
| *> A(1:K,1:K) (ones are not stored), | |||
| *> and V2 is an M-by-K rectangular stored the array B(1:M,1:K), | |||
| *> (because on input B1_in is a rectangular zero | |||
| *> matrix that is not stored and the space is | |||
| *> used to store V2). | |||
| *> | |||
| *> c) T is a K-by-K upper-triangular matrix stored | |||
| *> in the array T(1:K,1:K). | |||
| *> | |||
| *> On output: | |||
| *> | |||
| *> a) ( A_out ) consists of two block columns: | |||
| *> ( B_out ) | |||
| *> | |||
| *> ( A_out ) = (( A1_out ) ( A2_out )) | |||
| *> ( B_out ) (( B1_out ) ( B2_out )), | |||
| *> | |||
| *> where the column blocks are: | |||
| *> | |||
| *> ( A1_out ) is a K-by-K square matrix, or a K-by-K | |||
| *> upper-triangular matrix, if V1 is an | |||
| *> identity matrix. AiOut is stored in | |||
| *> the array A(1:K,1:K). | |||
| *> ( B1_out ) is an M-by-K rectangular matrix stored | |||
| *> in the array B(1:M,K:N). | |||
| *> | |||
| *> ( A2_out ) is a K-by-(N-K) rectangular matrix stored | |||
| *> in the array A(1:K,K+1:N). | |||
| *> ( B2_out ) is an M-by-(N-K) rectangular matrix stored | |||
| *> in the array B(1:M,K+1:N). | |||
| *> | |||
| *> | |||
| *> The operation above can be represented as the same operation | |||
| *> on each block column: | |||
| *> | |||
| *> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**H ) * ( A1_in ) | |||
| *> ( B1_out ) ( 0 ) ( 0 ) | |||
| *> | |||
| *> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**H ) * ( A2_in ) | |||
| *> ( B2_out ) ( B2_in ) ( B2_in ) | |||
| *> | |||
| *> If IDENT != 'I': | |||
| *> | |||
| *> The computation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*(V1**H)*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*(V1**H)*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - V1*T*( (V1**H)*A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( (V1**H)*A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> If IDENT == 'I': | |||
| *> | |||
| *> The operation for column block 1: | |||
| *> | |||
| *> A1_out: = A1_in - V1*T*A1_in | |||
| *> | |||
| *> B1_out: = - V2*T*A1_in | |||
| *> | |||
| *> The computation for column block 2, which exists if N > K: | |||
| *> | |||
| *> A2_out: = A2_in - T*( A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> B2_out: = B2_in - V2*T*( A2_in + (V2**H)*B2_in ) | |||
| *> | |||
| *> (2) Description of the Algorithmic Computation. | |||
| *> | |||
| *> In the first step, we compute column block 2, i.e. A2 and B2. | |||
| *> Here, we need to use the K-by-(N-K) rectangular workspace | |||
| *> matrix W2 that is of the same size as the matrix A2. | |||
| *> W2 is stored in the array WORK(1:K,1:(N-K)). | |||
| *> | |||
| *> In the second step, we compute column block 1, i.e. A1 and B1. | |||
| *> Here, we need to use the K-by-K square workspace matrix W1 | |||
| *> that is of the same size as the as the matrix A1. | |||
| *> W1 is stored in the array WORK(1:K,1:K). | |||
| *> | |||
| *> NOTE: Hence, in this routine, we need the workspace array WORK | |||
| *> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from | |||
| *> the first step and W1 from the second step. | |||
| *> | |||
| *> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I', | |||
| *> more computations than in the Case (B). | |||
| *> | |||
| *> if( IDENT != 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(2) W2: = (V1**H) * W2 = (unit_lower_tr_of_(A1)**H) * W2 | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(2) W1: = (V1**H) * W1 = (unit_lower_tr_of_(A1)**H) * W1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6) square A1: = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I', | |||
| *> less computations than in the Case (A) | |||
| *> | |||
| *> if( IDENT == 'I' ) then | |||
| *> if ( N > K ) then | |||
| *> (First Step - column block 2) | |||
| *> col2_(1) W2: = A2 | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> else | |||
| *> (Second Step - column block 1) | |||
| *> col1_(1) W1: = A1 | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> col1_(6) upper-triangular_of_(A1): = A1 - W1 | |||
| *> end if | |||
| *> end if | |||
| *> | |||
| *> Combine these cases (A) and (B) together, this is the resulting | |||
| *> algorithm: | |||
| *> | |||
| *> if ( N > K ) then | |||
| *> | |||
| *> (First Step - column block 2) | |||
| *> | |||
| *> col2_(1) W2: = A2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(2) W2: = (V1**H) * W2 | |||
| *> = (unit_lower_tr_of_(A1)**H) * W2 | |||
| *> end if | |||
| *> col2_(3) W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2] | |||
| *> col2_(4) W2: = T * W2 | |||
| *> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 | |||
| *> end if | |||
| *> col2_(7) A2: = A2 - W2 | |||
| *> | |||
| *> else | |||
| *> | |||
| *> (Second Step - column block 1) | |||
| *> | |||
| *> col1_(1) W1: = A1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(2) W1: = (V1**H) * W1 | |||
| *> = (unit_lower_tr_of_(A1)**H) * W1 | |||
| *> end if | |||
| *> col1_(3) W1: = T * W1 | |||
| *> col1_(4) B1: = - V2 * W1 = - B1 * W1 | |||
| *> if( IDENT != 'I' ) then | |||
| *> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 | |||
| *> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) | |||
| *> end if | |||
| *> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) | |||
| *> | |||
| *> end if | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE ZLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, | |||
| $ WORK, LDWORK ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK auxiliary routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| CHARACTER IDENT | |||
| INTEGER K, LDA, LDB, LDT, LDWORK, M, N | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), | |||
| $ WORK( LDWORK, * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX*16 CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), | |||
| $ CZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LNOTIDENT | |||
| INTEGER I, J | |||
| * .. | |||
| * .. EXTERNAL FUNCTIONS .. | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ZCOPY, ZGEMM, ZTRMM | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N ) | |||
| $ RETURN | |||
| * | |||
| LNOTIDENT = .NOT.LSAME( IDENT, 'I' ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * First Step. Computation of the Column Block 2: | |||
| * | |||
| * ( A2 ) := H * ( A2 ) | |||
| * ( B2 ) ( B2 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| IF( N.GT.K ) THEN | |||
| * | |||
| * col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N) | |||
| * into W2=WORK(1:K, 1:N-K) column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| CALL ZCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(2) Compute W2: = (V1**H) * W2 = (A1**H) * W2, | |||
| * V1 is not an identy matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| * | |||
| CALL ZTRMM( 'L', 'L', 'C', 'U', K, N-K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(3) Compute W2: = W2 + (V2**H) * B2 = W2 + (B1**H) * B2 | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL ZGEMM( 'C', 'N', K, N-K, M, CONE, B, LDB, | |||
| $ B( 1, K+1 ), LDB, CONE, WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(4) Compute W2: = T * W2, | |||
| * T is upper-triangular. | |||
| * | |||
| CALL ZTRMM( 'L', 'U', 'N', 'N', K, N-K, CONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2, | |||
| * V2 stored in B1. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL ZGEMM( 'N', 'N', M, N-K, K, -CONE, B, LDB, | |||
| $ WORK, LDWORK, CONE, B( 1, K+1 ), LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col2_(6) Compute W2: = V1 * W2 = A1 * W2, | |||
| * V1 is not an identity matrix, but unit lower-triangular, | |||
| * V1 stored in A1 (diagonal ones are not stored). | |||
| * | |||
| CALL ZTRMM( 'L', 'L', 'N', 'U', K, N-K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col2_(7) Compute A2: = A2 - W2 = | |||
| * = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K), | |||
| * column-by-column. | |||
| * | |||
| DO J = 1, N-K | |||
| DO I = 1, K | |||
| A( I, K+J ) = A( I, K+J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * Second Step. Computation of the Column Block 1: | |||
| * | |||
| * ( A1 ) := H * ( A1 ) | |||
| * ( B1 ) ( 0 ) | |||
| * | |||
| * ------------------------------------------------------------------ | |||
| * | |||
| * col1_(1) Compute W1: = A1. Copy the upper-triangular | |||
| * A1 = A(1:K, 1:K) into the upper-triangular | |||
| * W1 = WORK(1:K, 1:K) column-by-column. | |||
| * | |||
| DO J = 1, K | |||
| CALL ZCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 ) | |||
| END DO | |||
| * | |||
| * Set the subdiagonal elements of W1 to zero column-by-column. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| WORK( I, J ) = CZERO | |||
| END DO | |||
| END DO | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(2) Compute W1: = (V1**H) * W1 = (A1**H) * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL ZTRMM( 'L', 'L', 'C', 'U', K, K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| END IF | |||
| * | |||
| * col1_(3) Compute W1: = T * W1, | |||
| * T is upper-triangular, | |||
| * W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, T, LDT, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(4) Compute B1: = - V2 * W1 = - B1 * W1, | |||
| * V2 = B1, W1 is upper-triangular with zeroes below the diagonal. | |||
| * | |||
| IF( M.GT.0 ) THEN | |||
| CALL ZTRMM( 'R', 'U', 'N', 'N', M, K, -CONE, WORK, LDWORK, | |||
| $ B, LDB ) | |||
| END IF | |||
| * | |||
| IF( LNOTIDENT ) THEN | |||
| * | |||
| * col1_(5) Compute W1: = V1 * W1 = A1 * W1, | |||
| * V1 is not an identity matrix, but unit lower-triangular | |||
| * V1 stored in A1 (diagonal ones are not stored), | |||
| * W1 is upper-triangular on input with zeroes below the diagonal, | |||
| * and square on output. | |||
| * | |||
| CALL ZTRMM( 'L', 'L', 'N', 'U', K, K, CONE, A, LDA, | |||
| $ WORK, LDWORK ) | |||
| * | |||
| * col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K) | |||
| * column-by-column. A1 is upper-triangular on input. | |||
| * If IDENT, A1 is square on output, and W1 is square, | |||
| * if NOT IDENT, A1 is upper-triangular on output, | |||
| * W1 is upper-triangular. | |||
| * | |||
| * col1_(6)_a Compute elements of A1 below the diagonal. | |||
| * | |||
| DO J = 1, K - 1 | |||
| DO I = J + 1, K | |||
| A( I, J ) = - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * col1_(6)_b Compute elements of A1 on and above the diagonal. | |||
| * | |||
| DO J = 1, K | |||
| DO I = 1, J | |||
| A( I, J ) = A( I, J ) - WORK( I, J ) | |||
| END DO | |||
| END DO | |||
| * | |||
| RETURN | |||
| * | |||
| * End of ZLARFB_GETT | |||
| * | |||
| END | |||
| @@ -0,0 +1,380 @@ | |||
| *> \brief \b ZUNGTSQR_ROW | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download ZUNGTSQR_ROW + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunrgtsqr_row.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunrgtsqr_row.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunrgtsqr_row.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| * $ LWORK, INFO ) | |||
| * IMPLICIT NONE | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with | |||
| *> orthonormal columns from the output of ZLATSQR. These N orthonormal | |||
| *> columns are the first N columns of a product of complex unitary | |||
| *> matrices Q(k)_in of order M, which are returned by ZLATSQR in | |||
| *> a special format. | |||
| *> | |||
| *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). | |||
| *> | |||
| *> The input matrices Q(k)_in are stored in row and column blocks in A. | |||
| *> See the documentation of ZLATSQR for more details on the format of | |||
| *> Q(k)_in, where each Q(k)_in is represented by block Householder | |||
| *> transformations. This routine calls an auxiliary routine ZLARFB_GETT, | |||
| *> where the computation is performed on each individual block. The | |||
| *> algorithm first sweeps NB-sized column blocks from the right to left | |||
| *> starting in the bottom row block and continues to the top row block | |||
| *> (hence _ROW in the routine name). This sweep is in reverse order of | |||
| *> the order in which ZLATSQR generates the output blocks. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] M | |||
| *> \verbatim | |||
| *> M is INTEGER | |||
| *> The number of rows of the matrix A. M >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of columns of the matrix A. M >= N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] MB | |||
| *> \verbatim | |||
| *> MB is INTEGER | |||
| *> The row block size used by ZLATSQR to return | |||
| *> arrays A and T. MB > N. | |||
| *> (Note that if MB > M, then M is used instead of MB | |||
| *> as the row block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NB | |||
| *> \verbatim | |||
| *> NB is INTEGER | |||
| *> The column block size used by ZLATSQR to return | |||
| *> arrays A and T. NB >= 1. | |||
| *> (Note that if NB > N, then N is used instead of NB | |||
| *> as the column block size). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX*16 array, dimension (LDA,N) | |||
| *> | |||
| *> On entry: | |||
| *> | |||
| *> The elements on and above the diagonal are not used as | |||
| *> input. The elements below the diagonal represent the unit | |||
| *> lower-trapezoidal blocked matrix V computed by ZLATSQR | |||
| *> that defines the input matrices Q_in(k) (ones on the | |||
| *> diagonal are not stored). See ZLATSQR for more details. | |||
| *> | |||
| *> On exit: | |||
| *> | |||
| *> The array A contains an M-by-N orthonormal matrix Q_out, | |||
| *> i.e the columns of A are orthogonal unit vectors. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,M). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] T | |||
| *> \verbatim | |||
| *> T is COMPLEX*16 array, | |||
| *> dimension (LDT, N * NIRB) | |||
| *> where NIRB = Number_of_input_row_blocks | |||
| *> = MAX( 1, CEIL((M-N)/(MB-N)) ) | |||
| *> Let NICB = Number_of_input_col_blocks | |||
| *> = CEIL(N/NB) | |||
| *> | |||
| *> The upper-triangular block reflectors used to define the | |||
| *> input matrices Q_in(k), k=(1:NIRB*NICB). The block | |||
| *> reflectors are stored in compact form in NIRB block | |||
| *> reflector sequences. Each of the NIRB block reflector | |||
| *> sequences is stored in a larger NB-by-N column block of T | |||
| *> and consists of NICB smaller NB-by-NB upper-triangular | |||
| *> column blocks. See ZLATSQR for more details on the format | |||
| *> of T. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDT | |||
| *> \verbatim | |||
| *> LDT is INTEGER | |||
| *> The leading dimension of the array T. | |||
| *> LDT >= max(1,min(NB,N)). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) | |||
| *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LWORK | |||
| *> \verbatim | |||
| *> The dimension of the array WORK. | |||
| *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), | |||
| *> where NBLOCAL=MIN(NB,N). | |||
| *> If LWORK = -1, then a workspace query is assumed. | |||
| *> The routine only calculates the optimal size of the WORK | |||
| *> array, returns this value as the first entry of the WORK | |||
| *> array, and no error message related to LWORK is issued | |||
| *> by XERBLA. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> \endverbatim | |||
| *> | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complex16OTHERcomputational | |||
| * | |||
| *> \par Contributors: | |||
| * ================== | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> November 2020, Igor Kozachenko, | |||
| *> Computer Science Division, | |||
| *> University of California, Berkeley | |||
| *> | |||
| *> \endverbatim | |||
| *> | |||
| * ===================================================================== | |||
| SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, | |||
| $ LWORK, INFO ) | |||
| IMPLICIT NONE | |||
| * | |||
| * -- LAPACK computational routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB | |||
| * .. | |||
| * .. Array Arguments .. | |||
| COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| COMPLEX*16 CONE, CZERO | |||
| PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), | |||
| $ CZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL LQUERY | |||
| INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM, | |||
| $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB, | |||
| $ KB, KB_LAST, KNB, MB1 | |||
| * .. | |||
| * .. Local Arrays .. | |||
| COMPLEX*16 DUMMY( 1, 1 ) | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ZLARFB_GETT, ZLASET, XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC DCMPLX, MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| * Test the input parameters | |||
| * | |||
| INFO = 0 | |||
| LQUERY = LWORK.EQ.-1 | |||
| IF( M.LT.0 ) THEN | |||
| INFO = -1 | |||
| ELSE IF( N.LT.0 .OR. M.LT.N ) THEN | |||
| INFO = -2 | |||
| ELSE IF( MB.LE.N ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NB.LT.1 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN | |||
| INFO = -8 | |||
| ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN | |||
| INFO = -10 | |||
| END IF | |||
| * | |||
| NBLOCAL = MIN( NB, N ) | |||
| * | |||
| * Determine the workspace size. | |||
| * | |||
| IF( INFO.EQ.0 ) THEN | |||
| LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) ) | |||
| END IF | |||
| * | |||
| * Handle error in the input parameters and handle the workspace query. | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'ZUNGTSQR_ROW', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * Quick return if possible | |||
| * | |||
| IF( MIN( M, N ).EQ.0 ) THEN | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| * (0) Set the upper-triangular part of the matrix A to zero and | |||
| * its diagonal elements to one. | |||
| * | |||
| CALL ZLASET('U', M, N, CZERO, CONE, A, LDA ) | |||
| * | |||
| * KB_LAST is the column index of the last column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1 | |||
| * | |||
| * | |||
| * (1) Bottom-up loop over row blocks of A, except the top row block. | |||
| * NOTE: If MB>=M, then the loop is never executed. | |||
| * | |||
| IF ( MB.LT.M ) THEN | |||
| * | |||
| * MB2 is the row blocking size for the row blocks before the | |||
| * first top row block in the matrix A. IB is the row index for | |||
| * the row blocks in the matrix A before the first top row block. | |||
| * IB_BOTTOM is the row index for the last bottom row block | |||
| * in the matrix A. JB_T is the column index of the corresponding | |||
| * column block in the matrix T. | |||
| * | |||
| * Initialize variables. | |||
| * | |||
| * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A | |||
| * including the first row block. | |||
| * | |||
| MB2 = MB - N | |||
| M_PLUS_ONE = M + 1 | |||
| ITMP = ( M - MB - 1 ) / MB2 | |||
| IB_BOTTOM = ITMP * MB2 + MB + 1 | |||
| NUM_ALL_ROW_BLOCKS = ITMP + 2 | |||
| JB_T = NUM_ALL_ROW_BLOCKS * N + 1 | |||
| * | |||
| DO IB = IB_BOTTOM, MB+1, -MB2 | |||
| * | |||
| * Determine the block size IMB for the current row block | |||
| * in the matrix A. | |||
| * | |||
| IMB = MIN( M_PLUS_ONE - IB, MB2 ) | |||
| * | |||
| * Determine the column index JB_T for the current column block | |||
| * in the matrix T. | |||
| * | |||
| JB_T = JB_T - N | |||
| * | |||
| * Apply column blocks of H in the row block from right to left. | |||
| * | |||
| * KB is the column index of the current column block reflector | |||
| * in the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| CALL ZLARFB_GETT( 'I', IMB, N-KB+1, KNB, | |||
| $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA, | |||
| $ A( IB, KB ), LDA, WORK, KNB ) | |||
| * | |||
| END DO | |||
| * | |||
| END DO | |||
| * | |||
| END IF | |||
| * | |||
| * (2) Top row block of A. | |||
| * NOTE: If MB>=M, then we have only one row block of A of size M | |||
| * and we work on the entire matrix A. | |||
| * | |||
| MB1 = MIN( MB, M ) | |||
| * | |||
| * Apply column blocks of H in the top row block from right to left. | |||
| * | |||
| * KB is the column index of the current block reflector in | |||
| * the matrices T and V. | |||
| * | |||
| DO KB = KB_LAST, 1, -NBLOCAL | |||
| * | |||
| * Determine the size of the current column block KNB in | |||
| * the matrices T and V. | |||
| * | |||
| KNB = MIN( NBLOCAL, N - KB + 1 ) | |||
| * | |||
| IF( MB1-KB-KNB+1.EQ.0 ) THEN | |||
| * | |||
| * In SLARFB_GETT parameters, when M=0, then the matrix B | |||
| * does not exist, hence we need to pass a dummy array | |||
| * reference DUMMY(1,1) to B with LDDUMMY=1. | |||
| * | |||
| CALL ZLARFB_GETT( 'N', 0, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ DUMMY( 1, 1 ), 1, WORK, KNB ) | |||
| ELSE | |||
| CALL ZLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB, | |||
| $ T( 1, KB ), LDT, A( KB, KB ), LDA, | |||
| $ A( KB+KNB, KB), LDA, WORK, KNB ) | |||
| END IF | |||
| * | |||
| END DO | |||
| * | |||
| WORK( 1 ) = DCMPLX( LWORKOPT ) | |||
| RETURN | |||
| * | |||
| * End of ZUNGTSQR_ROW | |||
| * | |||
| END | |||