|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ncf export file"""
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
-
- import src.constants as rconst
- from src.config import cfg
- from ncf import NCFModel, PredictWithSigmoid
-
- parser = argparse.ArgumentParser(description='ncf export')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"], help="Dataset.")
- parser.add_argument("--file_name", type=str, default="ncf", help="output file name.")
- parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
- parser.add_argument("--device_target", type=str, default="Ascend",
- choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == "__main__":
- topk = rconst.TOP_K
- num_eval_neg = rconst.NUM_EVAL_NEGATIVES
-
- if args.dataset == "ml-1m":
- num_eval_users = 6040
- num_eval_items = 3706
- elif args.dataset == "ml-20m":
- num_eval_users = 138493
- num_eval_items = 26744
- else:
- raise ValueError("not supported dataset")
-
- ncf_net = NCFModel(num_users=num_eval_users,
- num_items=num_eval_items,
- num_factors=cfg.num_factors,
- model_layers=cfg.layers,
- mf_regularization=0,
- mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
- mf_dim=16)
-
- param_dict = load_checkpoint(args.ckpt_file)
- load_param_into_net(ncf_net, param_dict)
-
- network = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
-
- users = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
- items = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
- masks = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.float32))
-
- input_data = [users, items, masks]
- export(network, *input_data, file_name=args.file_name, file_format=args.file_format)
|