You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 3.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ncf export file"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
  19. import src.constants as rconst
  20. from src.config import cfg
  21. from ncf import NCFModel, PredictWithSigmoid
  22. parser = argparse.ArgumentParser(description='ncf export')
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  25. parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"], help="Dataset.")
  26. parser.add_argument("--file_name", type=str, default="ncf", help="output file name.")
  27. parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
  28. parser.add_argument("--device_target", type=str, default="Ascend",
  29. choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
  30. args = parser.parse_args()
  31. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  32. if args.device_target == "Ascend":
  33. context.set_context(device_id=args.device_id)
  34. if __name__ == "__main__":
  35. topk = rconst.TOP_K
  36. num_eval_neg = rconst.NUM_EVAL_NEGATIVES
  37. if args.dataset == "ml-1m":
  38. num_eval_users = 6040
  39. num_eval_items = 3706
  40. elif args.dataset == "ml-20m":
  41. num_eval_users = 138493
  42. num_eval_items = 26744
  43. else:
  44. raise ValueError("not supported dataset")
  45. ncf_net = NCFModel(num_users=num_eval_users,
  46. num_items=num_eval_items,
  47. num_factors=cfg.num_factors,
  48. model_layers=cfg.layers,
  49. mf_regularization=0,
  50. mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
  51. mf_dim=16)
  52. param_dict = load_checkpoint(args.ckpt_file)
  53. load_param_into_net(ncf_net, param_dict)
  54. network = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
  55. users = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
  56. items = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32))
  57. masks = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.float32))
  58. input_data = [users, items, masks]
  59. export(network, *input_data, file_name=args.file_name, file_format=args.file_format)