|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class NetRMSProp(nn.Cell):
- def __init__(self, use_centered):
- super(NetRMSProp, self).__init__()
- self.use_centered = use_centered
- if use_centered:
- self.rms_opt = P.ApplyCenteredRMSProp()
- else:
- self.rms_opt = P.ApplyRMSProp()
-
- def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
- if self.use_centered:
- return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
- return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
-
-
- def rmsprop_numpy(variable, gradients, mean_square, moment,
- learning_rate, decay, momentum, epsilon):
- mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
- moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
- variable = variable - moment
-
-
- def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
- learning_rate, decay, momentum, epsilon):
- mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
- mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
- moment = momentum * moment + learning_rate / np.sqrt(
- mean_square - mean_gradients * mean_gradients + epsilon) * gradients
- variable = variable - moment
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_rmsprop():
- learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
-
- variable_np = np.array([1.0, 2.0], dtype=np.float32)
- gradients_np = np.array([0.1, 0.2], dtype=np.float32)
- mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
- mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
- moment_np = np.array([0.0, 0.0], dtype=np.float32)
-
- variable_ms = Tensor(variable_np)
- gradients_ms = Tensor(gradients_np)
- mean_gradients_ms = Tensor(mean_gradients_np)
- mean_square_ms = Tensor(mean_square_np)
- moment_ms = Tensor(moment_np)
-
- if centered:
- rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
- learning_rate, decay, momentum, epsilon)
- else:
- rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
- learning_rate, decay, momentum, epsilon)
-
- net = NetRMSProp(centered)
- _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
- moment_ms, learning_rate, decay, momentum, epsilon)
-
- error = np.ones(shape=variable_np.shape) * 10e-6
- diff = variable_ms.asnumpy() - variable_np
- assert np.all(diff < error)
-
- error = np.ones(shape=gradients_np.shape) * 10e-6
- diff = gradients_ms.asnumpy() - gradients_np
- assert np.all(diff < error)
-
- error = np.ones(shape=mean_gradients_np.shape) * 10e-6
- diff = mean_gradients_ms.asnumpy() - mean_gradients_np
- assert np.all(diff < error)
-
- error = np.ones(shape=mean_square_np.shape) * 10e-6
- diff = mean_square_ms.asnumpy() - mean_square_np
- assert np.all(diff < error)
-
- error = np.ones(shape=moment_np.shape) * 10e-6
- diff = moment_ms.asnumpy() - moment_np
- assert np.all(diff < error)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_rmspropcenter():
- learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
-
- variable_np = np.array([1.0, 2.0], dtype=np.float32)
- gradients_np = np.array([0.1, 0.2], dtype=np.float32)
- mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
- mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
- moment_np = np.array([0.0, 0.0], dtype=np.float32)
-
- variable_ms = Tensor(variable_np)
- gradients_ms = Tensor(gradients_np)
- mean_gradients_ms = Tensor(mean_gradients_np)
- mean_square_ms = Tensor(mean_square_np)
- moment_ms = Tensor(moment_np)
-
- if centered:
- rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
- learning_rate, decay, momentum, epsilon)
- else:
- rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
- learning_rate, decay, momentum, epsilon)
-
- net = NetRMSProp(centered)
- _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
- learning_rate, decay, momentum, epsilon)
-
- error = np.ones(shape=variable_np.shape) * 10e-6
- diff = variable_ms.asnumpy() - variable_np
- assert np.all(diff < error)
-
- error = np.ones(shape=gradients_np.shape) * 10e-6
- diff = gradients_ms.asnumpy() - gradients_np
- assert np.all(diff < error)
-
- error = np.ones(shape=mean_gradients_np.shape) * 10e-6
- diff = mean_gradients_ms.asnumpy() - mean_gradients_np
- assert np.all(diff < error)
-
- error = np.ones(shape=mean_square_np.shape) * 10e-6
- diff = mean_square_ms.asnumpy() - mean_square_np
- assert np.all(diff < error)
-
- error = np.ones(shape=moment_np.shape) * 10e-6
- diff = moment_ms.asnumpy() - moment_np
- assert np.all(diff < error)
|