You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_rmsprop.py 6.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  22. class NetRMSProp(nn.Cell):
  23. def __init__(self, use_centered):
  24. super(NetRMSProp, self).__init__()
  25. self.use_centered = use_centered
  26. if use_centered:
  27. self.rms_opt = P.ApplyCenteredRMSProp()
  28. else:
  29. self.rms_opt = P.ApplyRMSProp()
  30. def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
  31. if self.use_centered:
  32. return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
  33. return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
  34. def rmsprop_numpy(variable, gradients, mean_square, moment,
  35. learning_rate, decay, momentum, epsilon):
  36. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  37. moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
  38. variable = variable - moment
  39. def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
  40. learning_rate, decay, momentum, epsilon):
  41. mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
  42. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  43. moment = momentum * moment + learning_rate / np.sqrt(
  44. mean_square - mean_gradients * mean_gradients + epsilon) * gradients
  45. variable = variable - moment
  46. @pytest.mark.level0
  47. @pytest.mark.platform_x86_gpu_training
  48. @pytest.mark.env_onecard
  49. def test_rmsprop():
  50. learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
  51. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  52. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  53. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  54. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  55. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  56. variable_ms = Tensor(variable_np)
  57. gradients_ms = Tensor(gradients_np)
  58. mean_gradients_ms = Tensor(mean_gradients_np)
  59. mean_square_ms = Tensor(mean_square_np)
  60. moment_ms = Tensor(moment_np)
  61. if centered:
  62. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  63. learning_rate, decay, momentum, epsilon)
  64. else:
  65. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  66. learning_rate, decay, momentum, epsilon)
  67. net = NetRMSProp(centered)
  68. _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
  69. moment_ms, learning_rate, decay, momentum, epsilon)
  70. error = np.ones(shape=variable_np.shape) * 10e-6
  71. diff = variable_ms.asnumpy() - variable_np
  72. assert np.all(diff < error)
  73. error = np.ones(shape=gradients_np.shape) * 10e-6
  74. diff = gradients_ms.asnumpy() - gradients_np
  75. assert np.all(diff < error)
  76. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  77. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  78. assert np.all(diff < error)
  79. error = np.ones(shape=mean_square_np.shape) * 10e-6
  80. diff = mean_square_ms.asnumpy() - mean_square_np
  81. assert np.all(diff < error)
  82. error = np.ones(shape=moment_np.shape) * 10e-6
  83. diff = moment_ms.asnumpy() - moment_np
  84. assert np.all(diff < error)
  85. @pytest.mark.level0
  86. @pytest.mark.platform_x86_gpu_training
  87. @pytest.mark.env_onecard
  88. def test_rmspropcenter():
  89. learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
  90. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  91. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  92. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  93. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  94. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  95. variable_ms = Tensor(variable_np)
  96. gradients_ms = Tensor(gradients_np)
  97. mean_gradients_ms = Tensor(mean_gradients_np)
  98. mean_square_ms = Tensor(mean_square_np)
  99. moment_ms = Tensor(moment_np)
  100. if centered:
  101. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  102. learning_rate, decay, momentum, epsilon)
  103. else:
  104. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  105. learning_rate, decay, momentum, epsilon)
  106. net = NetRMSProp(centered)
  107. _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
  108. learning_rate, decay, momentum, epsilon)
  109. error = np.ones(shape=variable_np.shape) * 10e-6
  110. diff = variable_ms.asnumpy() - variable_np
  111. assert np.all(diff < error)
  112. error = np.ones(shape=gradients_np.shape) * 10e-6
  113. diff = gradients_ms.asnumpy() - gradients_np
  114. assert np.all(diff < error)
  115. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  116. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  117. assert np.all(diff < error)
  118. error = np.ones(shape=mean_square_np.shape) * 10e-6
  119. diff = mean_square_ms.asnumpy() - mean_square_np
  120. assert np.all(diff < error)
  121. error = np.ones(shape=moment_np.shape) * 10e-6
  122. diff = moment_ms.asnumpy() - moment_np
  123. assert np.all(diff < error)