|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
-
- class NetZerosLike(nn.Cell):
- def __init__(self):
- super(NetZerosLike, self).__init__()
- self.zeros_like = P.ZerosLike()
-
- def construct(self, x):
- return self.zeros_like(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_ZerosLike():
- x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
- x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
-
- x0 = Tensor(x0_np)
- x1 = Tensor(x1_np)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- zeros_like = NetZerosLike()
- output0 = zeros_like(x0)
- expect0 = np.zeros_like(x0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = zeros_like(x1)
- expect1 = np.zeros_like(x1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- zeros_like = NetZerosLike()
- output0 = zeros_like(x0)
- expect0 = np.zeros_like(x0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = zeros_like(x1)
- expect1 = np.zeros_like(x1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
-
- class ZerosLikeDynamicNet(nn.Cell):
- def __init__(self):
- super(ZerosLikeDynamicNet, self).__init__()
- self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
- self.zeros_like = P.ZerosLike()
-
- def construct(self, x):
- converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
- return self.zeros_like(converted_to_dynamic)
-
-
- def zeros_like_dynamic(x):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = ZerosLikeDynamicNet()
- return net(x)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_bool():
- x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
- output = zeros_like_dynamic(x)
- expected = np.zeros([3, 4, 1, 2, 5])
- np.testing.assert_array_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_int8():
- x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
- output = zeros_like_dynamic(x)
- expected = np.zeros([1, 4, 1, 6])
- np.testing.assert_array_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_uint8():
- x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
- output = zeros_like_dynamic(x)
- expected = np.zeros([3, 2, 5])
- np.testing.assert_array_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_int32():
- x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
- output = zeros_like_dynamic(x)
- expected = np.zeros([2, 2, 2, 2])
- np.testing.assert_array_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_float16():
- x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
- output = zeros_like_dynamic(x)
- expected = np.zeros([3, 4, 1, 2, 5])
- np.testing.assert_array_almost_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_float32():
- x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
- output = zeros_like_dynamic(x)
- expected = np.zeros([3, 7, 3])
- np.testing.assert_array_almost_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_float64():
- x = Tensor(np.arange(2).reshape(2, 1, 1).astype(np.float64))
- output = zeros_like_dynamic(x)
- expected = np.zeros([2, 1, 1])
- np.testing.assert_array_almost_equal(output.asnumpy(), expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_zeros_like_dynamic_multiple_inputs():
- net = ZerosLikeDynamicNet()
-
- x = Tensor(np.arange(4).reshape(4).astype(np.float32))
- output = net(x)
- expected = np.zeros([4])
- np.testing.assert_array_almost_equal(output.asnumpy(), expected)
-
- x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
- output = net(x)
- expected = np.zeros([2, 1, 2, 2])
- np.testing.assert_array_equal(output.asnumpy(), expected)
-
- x = Tensor(np.arange(1).reshape(1).astype(np.float16))
- output = net(x)
- expected = np.zeros([1])
- np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|